Commit fd5ed81d authored by Roy Marmelstein's avatar Roy Marmelstein

Building a minizip module

parent c22dca52
...@@ -10,6 +10,9 @@ ...@@ -10,6 +10,9 @@
347E3A781C1DFFB500A11FD3 /* Zip.h in Headers */ = {isa = PBXBuildFile; fileRef = 347E3A771C1DFFB500A11FD3 /* Zip.h */; settings = {ATTRIBUTES = (Public, ); }; }; 347E3A781C1DFFB500A11FD3 /* Zip.h in Headers */ = {isa = PBXBuildFile; fileRef = 347E3A771C1DFFB500A11FD3 /* Zip.h */; settings = {ATTRIBUTES = (Public, ); }; };
347E3A7F1C1DFFB500A11FD3 /* Zip.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 347E3A741C1DFFB500A11FD3 /* Zip.framework */; }; 347E3A7F1C1DFFB500A11FD3 /* Zip.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 347E3A741C1DFFB500A11FD3 /* Zip.framework */; };
347E3A841C1DFFB500A11FD3 /* ZipTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 347E3A831C1DFFB500A11FD3 /* ZipTests.swift */; }; 347E3A841C1DFFB500A11FD3 /* ZipTests.swift in Sources */ = {isa = PBXBuildFile; fileRef = 347E3A831C1DFFB500A11FD3 /* ZipTests.swift */; };
347E3AD81C1E04C900A11FD3 /* Zip.swift in Sources */ = {isa = PBXBuildFile; fileRef = 347E3AD71C1E04C900A11FD3 /* Zip.swift */; };
347E3B1F1C1E1CB500A11FD3 /* libz.1.2.5.tbd in Frameworks */ = {isa = PBXBuildFile; fileRef = 347E3B1E1C1E1CB500A11FD3 /* libz.1.2.5.tbd */; };
347E3B6B1C1E24D300A11FD3 /* minizip in Resources */ = {isa = PBXBuildFile; fileRef = 347E3B6A1C1E24D300A11FD3 /* minizip */; };
/* End PBXBuildFile section */ /* End PBXBuildFile section */
/* Begin PBXContainerItemProxy section */ /* Begin PBXContainerItemProxy section */
...@@ -29,6 +32,9 @@ ...@@ -29,6 +32,9 @@
347E3A7E1C1DFFB500A11FD3 /* ZipTests.xctest */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = ZipTests.xctest; sourceTree = BUILT_PRODUCTS_DIR; }; 347E3A7E1C1DFFB500A11FD3 /* ZipTests.xctest */ = {isa = PBXFileReference; explicitFileType = wrapper.cfbundle; includeInIndex = 0; path = ZipTests.xctest; sourceTree = BUILT_PRODUCTS_DIR; };
347E3A831C1DFFB500A11FD3 /* ZipTests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ZipTests.swift; sourceTree = "<group>"; }; 347E3A831C1DFFB500A11FD3 /* ZipTests.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = ZipTests.swift; sourceTree = "<group>"; };
347E3A851C1DFFB500A11FD3 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; }; 347E3A851C1DFFB500A11FD3 /* Info.plist */ = {isa = PBXFileReference; lastKnownFileType = text.plist.xml; path = Info.plist; sourceTree = "<group>"; };
347E3AD71C1E04C900A11FD3 /* Zip.swift */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.swift; path = Zip.swift; sourceTree = "<group>"; };
347E3B1E1C1E1CB500A11FD3 /* libz.1.2.5.tbd */ = {isa = PBXFileReference; lastKnownFileType = "sourcecode.text-based-dylib-definition"; name = libz.1.2.5.tbd; path = usr/lib/libz.1.2.5.tbd; sourceTree = SDKROOT; };
347E3B6A1C1E24D300A11FD3 /* minizip */ = {isa = PBXFileReference; lastKnownFileType = folder; path = minizip; sourceTree = SOURCE_ROOT; };
/* End PBXFileReference section */ /* End PBXFileReference section */
/* Begin PBXFrameworksBuildPhase section */ /* Begin PBXFrameworksBuildPhase section */
...@@ -36,6 +42,7 @@ ...@@ -36,6 +42,7 @@
isa = PBXFrameworksBuildPhase; isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647; buildActionMask = 2147483647;
files = ( files = (
347E3B1F1C1E1CB500A11FD3 /* libz.1.2.5.tbd in Frameworks */,
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;
}; };
...@@ -71,8 +78,11 @@ ...@@ -71,8 +78,11 @@
347E3A761C1DFFB500A11FD3 /* Zip */ = { 347E3A761C1DFFB500A11FD3 /* Zip */ = {
isa = PBXGroup; isa = PBXGroup;
children = ( children = (
347E3B6A1C1E24D300A11FD3 /* minizip */,
347E3B1E1C1E1CB500A11FD3 /* libz.1.2.5.tbd */,
347E3A771C1DFFB500A11FD3 /* Zip.h */, 347E3A771C1DFFB500A11FD3 /* Zip.h */,
347E3A791C1DFFB500A11FD3 /* Info.plist */, 347E3A791C1DFFB500A11FD3 /* Info.plist */,
347E3AD71C1E04C900A11FD3 /* Zip.swift */,
); );
path = Zip; path = Zip;
sourceTree = "<group>"; sourceTree = "<group>";
...@@ -177,6 +187,7 @@ ...@@ -177,6 +187,7 @@
isa = PBXResourcesBuildPhase; isa = PBXResourcesBuildPhase;
buildActionMask = 2147483647; buildActionMask = 2147483647;
files = ( files = (
347E3B6B1C1E24D300A11FD3 /* minizip in Resources */,
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;
}; };
...@@ -194,6 +205,7 @@ ...@@ -194,6 +205,7 @@
isa = PBXSourcesBuildPhase; isa = PBXSourcesBuildPhase;
buildActionMask = 2147483647; buildActionMask = 2147483647;
files = ( files = (
347E3AD81C1E04C900A11FD3 /* Zip.swift in Sources */,
); );
runOnlyForDeploymentPostprocessing = 0; runOnlyForDeploymentPostprocessing = 0;
}; };
...@@ -308,6 +320,8 @@ ...@@ -308,6 +320,8 @@
347E3A891C1DFFB500A11FD3 /* Debug */ = { 347E3A891C1DFFB500A11FD3 /* Debug */ = {
isa = XCBuildConfiguration; isa = XCBuildConfiguration;
buildSettings = { buildSettings = {
CLANG_ALLOW_NON_MODULAR_INCLUDES_IN_FRAMEWORK_MODULES = YES;
CLANG_ENABLE_MODULES = YES;
DEFINES_MODULE = YES; DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1; DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1; DYLIB_CURRENT_VERSION = 1;
...@@ -315,15 +329,23 @@ ...@@ -315,15 +329,23 @@
INFOPLIST_FILE = Zip/Info.plist; INFOPLIST_FILE = Zip/Info.plist;
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks"; INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = "$(inherited) @executable_path/Frameworks @loader_path/Frameworks"; LD_RUNPATH_SEARCH_PATHS = "$(inherited) @executable_path/Frameworks @loader_path/Frameworks";
LIBRARY_SEARCH_PATHS = (
"$(inherited)",
"$(PROJECT_DIR)/Zip",
);
PRODUCT_BUNDLE_IDENTIFIER = com.roymarmelstein.Zip; PRODUCT_BUNDLE_IDENTIFIER = com.roymarmelstein.Zip;
PRODUCT_NAME = "$(TARGET_NAME)"; PRODUCT_NAME = "$(TARGET_NAME)";
SKIP_INSTALL = YES; SKIP_INSTALL = YES;
SWIFT_INCLUDE_PATHS = "${SRCROOT}/zlib/** ${SRCROOT}/minizip/**";
SWIFT_OPTIMIZATION_LEVEL = "-Onone";
}; };
name = Debug; name = Debug;
}; };
347E3A8A1C1DFFB500A11FD3 /* Release */ = { 347E3A8A1C1DFFB500A11FD3 /* Release */ = {
isa = XCBuildConfiguration; isa = XCBuildConfiguration;
buildSettings = { buildSettings = {
CLANG_ALLOW_NON_MODULAR_INCLUDES_IN_FRAMEWORK_MODULES = YES;
CLANG_ENABLE_MODULES = YES;
DEFINES_MODULE = YES; DEFINES_MODULE = YES;
DYLIB_COMPATIBILITY_VERSION = 1; DYLIB_COMPATIBILITY_VERSION = 1;
DYLIB_CURRENT_VERSION = 1; DYLIB_CURRENT_VERSION = 1;
...@@ -331,9 +353,14 @@ ...@@ -331,9 +353,14 @@
INFOPLIST_FILE = Zip/Info.plist; INFOPLIST_FILE = Zip/Info.plist;
INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks"; INSTALL_PATH = "$(LOCAL_LIBRARY_DIR)/Frameworks";
LD_RUNPATH_SEARCH_PATHS = "$(inherited) @executable_path/Frameworks @loader_path/Frameworks"; LD_RUNPATH_SEARCH_PATHS = "$(inherited) @executable_path/Frameworks @loader_path/Frameworks";
LIBRARY_SEARCH_PATHS = (
"$(inherited)",
"$(PROJECT_DIR)/Zip",
);
PRODUCT_BUNDLE_IDENTIFIER = com.roymarmelstein.Zip; PRODUCT_BUNDLE_IDENTIFIER = com.roymarmelstein.Zip;
PRODUCT_NAME = "$(TARGET_NAME)"; PRODUCT_NAME = "$(TARGET_NAME)";
SKIP_INSTALL = YES; SKIP_INSTALL = YES;
SWIFT_INCLUDE_PATHS = "${SRCROOT}/zlib/** ${SRCROOT}/minizip/**";
}; };
name = Release; name = Release;
}; };
...@@ -376,6 +403,7 @@ ...@@ -376,6 +403,7 @@
347E3A8A1C1DFFB500A11FD3 /* Release */, 347E3A8A1C1DFFB500A11FD3 /* Release */,
); );
defaultConfigurationIsVisible = 0; defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
}; };
347E3A8B1C1DFFB500A11FD3 /* Build configuration list for PBXNativeTarget "ZipTests" */ = { 347E3A8B1C1DFFB500A11FD3 /* Build configuration list for PBXNativeTarget "ZipTests" */ = {
isa = XCConfigurationList; isa = XCConfigurationList;
...@@ -384,6 +412,7 @@ ...@@ -384,6 +412,7 @@
347E3A8D1C1DFFB500A11FD3 /* Release */, 347E3A8D1C1DFFB500A11FD3 /* Release */,
); );
defaultConfigurationIsVisible = 0; defaultConfigurationIsVisible = 0;
defaultConfigurationName = Release;
}; };
/* End XCConfigurationList section */ /* End XCConfigurationList section */
}; };
......
//
// Zip.swift
// Zip
//
// Created by Roy Marmelstein on 13/12/2015.
// Copyright © 2015 Roy Marmelstein. All rights reserved.
//
import Foundation
import minizip
class Zip {
func helloWorld() {
}
}
\ No newline at end of file
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
This file contains the definitions required to use AES in C. See aesopt.h
for optimisation details.
*/
#ifndef _AES_H
#define _AES_H
#include <stdlib.h>
/* This include is used to find 8 & 32 bit unsigned integer types */
#include "brg_types.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#define AES_128 /* if a fast 128 bit key scheduler is needed */
#define AES_192 /* if a fast 192 bit key scheduler is needed */
#define AES_256 /* if a fast 256 bit key scheduler is needed */
#define AES_VAR /* if variable key size scheduler is needed */
#define AES_MODES /* if support is needed for modes */
/* The following must also be set in assembler files if being used */
#define AES_ENCRYPT /* if support for encryption is needed */
#define AES_DECRYPT /* if support for decryption is needed */
#define AES_REV_DKS /* define to reverse decryption key schedule */
#define AES_BLOCK_SIZE 16 /* the AES block size in bytes */
#define N_COLS 4 /* the number of columns in the state */
/* The key schedule length is 11, 13 or 15 16-byte blocks for 128, */
/* 192 or 256-bit keys respectively. That is 176, 208 or 240 bytes */
/* or 44, 52 or 60 32-bit words. */
#if defined( AES_VAR ) || defined( AES_256 )
#define KS_LENGTH 60
#elif defined( AES_192 )
#define KS_LENGTH 52
#else
#define KS_LENGTH 44
#endif
#define AES_RETURN INT_RETURN
/* the character array 'inf' in the following structures is used */
/* to hold AES context information. This AES code uses cx->inf.b[0] */
/* to hold the number of rounds multiplied by 16. The other three */
/* elements can be used by code that implements additional modes */
typedef union
{ uint_32t l;
uint_8t b[4];
} aes_inf;
typedef struct
{ uint_32t ks[KS_LENGTH];
aes_inf inf;
} aes_encrypt_ctx;
typedef struct
{ uint_32t ks[KS_LENGTH];
aes_inf inf;
} aes_decrypt_ctx;
/* This routine must be called before first use if non-static */
/* tables are being used */
AES_RETURN aes_init(void);
/* Key lengths in the range 16 <= key_len <= 32 are given in bytes, */
/* those in the range 128 <= key_len <= 256 are given in bits */
#if defined( AES_ENCRYPT )
#if defined( AES_128 ) || defined( AES_VAR)
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
#endif
#if defined( AES_192 ) || defined( AES_VAR)
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
#endif
#if defined( AES_256 ) || defined( AES_VAR)
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
#endif
#if defined( AES_VAR )
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1]);
#endif
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1]);
#endif
#if defined( AES_DECRYPT )
#if defined( AES_128 ) || defined( AES_VAR)
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
#endif
#if defined( AES_192 ) || defined( AES_VAR)
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
#endif
#if defined( AES_256 ) || defined( AES_VAR)
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
#endif
#if defined( AES_VAR )
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1]);
#endif
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1]);
#endif
#if defined( AES_MODES )
/* Multiple calls to the following subroutines for multiple block */
/* ECB, CBC, CFB, OFB and CTR mode encryption can be used to handle */
/* long messages incremantally provided that the context AND the iv */
/* are preserved between all such calls. For the ECB and CBC modes */
/* each individual call within a series of incremental calls must */
/* process only full blocks (i.e. len must be a multiple of 16) but */
/* the CFB, OFB and CTR mode calls can handle multiple incremental */
/* calls of any length. Each mode is reset when a new AES key is */
/* set but ECB and CBC operations can be reset without setting a */
/* new key by setting a new IV value. To reset CFB, OFB and CTR */
/* without setting the key, aes_mode_reset() must be called and the */
/* IV must be set. NOTE: All these calls update the IV on exit so */
/* this has to be reset if a new operation with the same IV as the */
/* previous one is required (or decryption follows encryption with */
/* the same IV array). */
AES_RETURN aes_test_alignment_detection(unsigned int n);
AES_RETURN aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_encrypt_ctx cx[1]);
AES_RETURN aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_decrypt_ctx cx[1]);
AES_RETURN aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_encrypt_ctx cx[1]);
AES_RETURN aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_decrypt_ctx cx[1]);
AES_RETURN aes_mode_reset(aes_encrypt_ctx cx[1]);
AES_RETURN aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
AES_RETURN aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
#define aes_ofb_encrypt aes_ofb_crypt
#define aes_ofb_decrypt aes_ofb_crypt
AES_RETURN aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx cx[1]);
typedef void cbuf_inc(unsigned char *cbuf);
#define aes_ctr_encrypt aes_ctr_crypt
#define aes_ctr_decrypt aes_ctr_crypt
AES_RETURN aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx cx[1]);
#endif
#if defined(__cplusplus)
}
#endif
#endif
/*
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
*/
#ifndef AES_VIA_ACE_H
#define AES_VIA_ACE_H
#if defined( _MSC_VER )
# define INLINE __inline
#elif defined( __GNUC__ )
# define INLINE static inline
#else
# error VIA ACE requires Microsoft or GNU C
#endif
#define NEH_GENERATE 1
#define NEH_LOAD 2
#define NEH_HYBRID 3
#define MAX_READ_ATTEMPTS 1000
/* VIA Nehemiah RNG and ACE Feature Mask Values */
#define NEH_CPU_IS_VIA 0x00000001
#define NEH_CPU_READ 0x00000010
#define NEH_CPU_MASK 0x00000011
#define NEH_RNG_PRESENT 0x00000004
#define NEH_RNG_ENABLED 0x00000008
#define NEH_ACE_PRESENT 0x00000040
#define NEH_ACE_ENABLED 0x00000080
#define NEH_RNG_FLAGS (NEH_RNG_PRESENT | NEH_RNG_ENABLED)
#define NEH_ACE_FLAGS (NEH_ACE_PRESENT | NEH_ACE_ENABLED)
#define NEH_FLAGS_MASK (NEH_RNG_FLAGS | NEH_ACE_FLAGS)
/* VIA Nehemiah Advanced Cryptography Engine (ACE) Control Word Values */
#define NEH_GEN_KEY 0x00000000 /* generate key schedule */
#define NEH_LOAD_KEY 0x00000080 /* load schedule from memory */
#define NEH_ENCRYPT 0x00000000 /* encryption */
#define NEH_DECRYPT 0x00000200 /* decryption */
#define NEH_KEY128 0x00000000+0x0a /* 128 bit key */
#define NEH_KEY192 0x00000400+0x0c /* 192 bit key */
#define NEH_KEY256 0x00000800+0x0e /* 256 bit key */
#define NEH_ENC_GEN (NEH_ENCRYPT | NEH_GEN_KEY)
#define NEH_DEC_GEN (NEH_DECRYPT | NEH_GEN_KEY)
#define NEH_ENC_LOAD (NEH_ENCRYPT | NEH_LOAD_KEY)
#define NEH_DEC_LOAD (NEH_DECRYPT | NEH_LOAD_KEY)
#define NEH_ENC_GEN_DATA {\
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
NEH_ENC_GEN | NEH_KEY192, 0, 0, 0,\
NEH_ENC_GEN | NEH_KEY256, 0, 0, 0 }
#define NEH_ENC_LOAD_DATA {\
NEH_ENC_LOAD | NEH_KEY128, 0, 0, 0,\
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
#define NEH_ENC_HYBRID_DATA {\
NEH_ENC_GEN | NEH_KEY128, 0, 0, 0,\
NEH_ENC_LOAD | NEH_KEY192, 0, 0, 0,\
NEH_ENC_LOAD | NEH_KEY256, 0, 0, 0 }
#define NEH_DEC_GEN_DATA {\
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
NEH_DEC_GEN | NEH_KEY192, 0, 0, 0,\
NEH_DEC_GEN | NEH_KEY256, 0, 0, 0 }
#define NEH_DEC_LOAD_DATA {\
NEH_DEC_LOAD | NEH_KEY128, 0, 0, 0,\
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
#define NEH_DEC_HYBRID_DATA {\
NEH_DEC_GEN | NEH_KEY128, 0, 0, 0,\
NEH_DEC_LOAD | NEH_KEY192, 0, 0, 0,\
NEH_DEC_LOAD | NEH_KEY256, 0, 0, 0 }
#define neh_enc_gen_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
(x) == 192 ? (NEH_ENC_GEN | NEH_KEY192) : (NEH_ENC_GEN | NEH_KEY256))
#define neh_enc_load_key(x) ((x) == 128 ? (NEH_ENC_LOAD | NEH_KEY128) : \
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
#define neh_enc_hybrid_key(x) ((x) == 128 ? (NEH_ENC_GEN | NEH_KEY128) : \
(x) == 192 ? (NEH_ENC_LOAD | NEH_KEY192) : (NEH_ENC_LOAD | NEH_KEY256))
#define neh_dec_gen_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
(x) == 192 ? (NEH_DEC_GEN | NEH_KEY192) : (NEH_DEC_GEN | NEH_KEY256))
#define neh_dec_load_key(x) ((x) == 128 ? (NEH_DEC_LOAD | NEH_KEY128) : \
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
#define neh_dec_hybrid_key(x) ((x) == 128 ? (NEH_DEC_GEN | NEH_KEY128) : \
(x) == 192 ? (NEH_DEC_LOAD | NEH_KEY192) : (NEH_DEC_LOAD | NEH_KEY256))
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
#define aligned_auto(type, name, no, stride) __declspec(align(stride)) type name[no]
#else
#define aligned_auto(type, name, no, stride) \
unsigned char _##name[no * sizeof(type) + stride]; \
type *name = (type*)(16 * ((((unsigned long)(_##name)) + stride - 1) / stride))
#endif
#if defined( _MSC_VER ) && ( _MSC_VER > 1200 )
#define aligned_array(type, name, no, stride) __declspec(align(stride)) type name[no]
#elif defined( __GNUC__ )
#define aligned_array(type, name, no, stride) type name[no] __attribute__ ((aligned(stride)))
#else
#define aligned_array(type, name, no, stride) type name[no]
#endif
/* VIA ACE codeword */
static unsigned char via_flags = 0;
#if defined ( _MSC_VER ) && ( _MSC_VER > 800 )
#define NEH_REKEY __asm pushfd __asm popfd
#define NEH_AES __asm _emit 0xf3 __asm _emit 0x0f __asm _emit 0xa7
#define NEH_ECB NEH_AES __asm _emit 0xc8
#define NEH_CBC NEH_AES __asm _emit 0xd0
#define NEH_CFB NEH_AES __asm _emit 0xe0
#define NEH_OFB NEH_AES __asm _emit 0xe8
#define NEH_RNG __asm _emit 0x0f __asm _emit 0xa7 __asm _emit 0xc0
INLINE int has_cpuid(void)
{ char ret_value;
__asm
{ pushfd /* save EFLAGS register */
mov eax,[esp] /* copy it to eax */
mov edx,0x00200000 /* CPUID bit position */
xor eax,edx /* toggle the CPUID bit */
push eax /* attempt to set EFLAGS to */
popfd /* the new value */
pushfd /* get the new EFLAGS value */
pop eax /* into eax */
xor eax,[esp] /* xor with original value */
and eax,edx /* has CPUID bit changed? */
setne al /* set to 1 if we have been */
mov ret_value,al /* able to change it */
popfd /* restore original EFLAGS */
}
return (int)ret_value;
}
INLINE int is_via_cpu(void)
{ char ret_value;
__asm
{ push ebx
xor eax,eax /* use CPUID to get vendor */
cpuid /* identity string */
xor eax,eax /* is it "CentaurHauls" ? */
sub ebx,0x746e6543 /* 'Cent' */
or eax,ebx
sub edx,0x48727561 /* 'aurH' */
or eax,edx
sub ecx,0x736c7561 /* 'auls' */
or eax,ecx
sete al /* set to 1 if it is VIA ID */
mov dl,NEH_CPU_READ /* mark CPU type as read */
or dl,al /* & store result in flags */
mov [via_flags],dl /* set VIA detected flag */
mov ret_value,al /* able to change it */
pop ebx
}
return (int)ret_value;
}
INLINE int read_via_flags(void)
{ char ret_value = 0;
__asm
{ mov eax,0xC0000000 /* Centaur extended CPUID */
cpuid
mov edx,0xc0000001 /* >= 0xc0000001 if support */
cmp eax,edx /* for VIA extended feature */
jnae no_rng /* flags is available */
mov eax,edx /* read Centaur extended */
cpuid /* feature flags */
mov eax,NEH_FLAGS_MASK /* mask out and save */
and eax,edx /* the RNG and ACE flags */
or [via_flags],al /* present & enabled flags */
mov ret_value,al /* able to change it */
no_rng:
}
return (int)ret_value;
}
INLINE unsigned int via_rng_in(void *buf)
{ char ret_value = 0x1f;
__asm
{ push edi
mov edi,buf /* input buffer address */
xor edx,edx /* try to fetch 8 bytes */
NEH_RNG /* do RNG read operation */
and ret_value,al /* count of bytes returned */
pop edi
}
return (int)ret_value;
}
INLINE void via_ecb_op5(
const void *k, const void *c, const void *s, void *d, int l)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
NEH_ECB
pop ebx
}
}
INLINE void via_cbc_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
mov eax, (v)
NEH_CBC
pop ebx
}
}
INLINE void via_cbc_op7(
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
mov eax, (v)
NEH_CBC
mov esi, eax
mov edi, (w)
movsd
movsd
movsd
movsd
pop ebx
}
}
INLINE void via_cfb_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
mov eax, (v)
NEH_CFB
pop ebx
}
}
INLINE void via_cfb_op7(
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
mov eax, (v)
NEH_CFB
mov esi, eax
mov edi, (w)
movsd
movsd
movsd
movsd
pop ebx
}
}
INLINE void via_ofb_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{ __asm
{ push ebx
NEH_REKEY
mov ebx, (k)
mov edx, (c)
mov esi, (s)
mov edi, (d)
mov ecx, (l)
mov eax, (v)
NEH_OFB
pop ebx
}
}
#elif defined( __GNUC__ )
#define NEH_REKEY asm("pushfl\n popfl\n\t")
#define NEH_ECB asm(".byte 0xf3, 0x0f, 0xa7, 0xc8\n\t")
#define NEH_CBC asm(".byte 0xf3, 0x0f, 0xa7, 0xd0\n\t")
#define NEH_CFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe0\n\t")
#define NEH_OFB asm(".byte 0xf3, 0x0f, 0xa7, 0xe8\n\t")
#define NEH_RNG asm(".byte 0x0f, 0xa7, 0xc0\n\t");
INLINE int has_cpuid(void)
{ int val;
asm("pushfl\n\t");
asm("movl 0(%esp),%eax\n\t");
asm("xor $0x00200000,%eax\n\t");
asm("pushl %eax\n\t");
asm("popfl\n\t");
asm("pushfl\n\t");
asm("popl %eax\n\t");
asm("xorl 0(%esp),%edx\n\t");
asm("andl $0x00200000,%eax\n\t");
asm("movl %%eax,%0\n\t" : "=m" (val));
asm("popfl\n\t");
return val ? 1 : 0;
}
INLINE int is_via_cpu(void)
{ int val;
asm("pushl %ebx\n\t");
asm("xorl %eax,%eax\n\t");
asm("cpuid\n\t");
asm("xorl %eax,%eax\n\t");
asm("subl $0x746e6543,%ebx\n\t");
asm("orl %ebx,%eax\n\t");
asm("subl $0x48727561,%edx\n\t");
asm("orl %edx,%eax\n\t");
asm("subl $0x736c7561,%ecx\n\t");
asm("orl %ecx,%eax\n\t");
asm("movl %%eax,%0\n\t" : "=m" (val));
asm("popl %ebx\n\t");
val = (val ? 0 : 1);
via_flags = (val | NEH_CPU_READ);
return val;
}
INLINE int read_via_flags(void)
{ unsigned char val;
asm("movl $0xc0000000,%eax\n\t");
asm("cpuid\n\t");
asm("movl $0xc0000001,%edx\n\t");
asm("cmpl %edx,%eax\n\t");
asm("setae %al\n\t");
asm("movb %%al,%0\n\t" : "=m" (val));
if(!val) return 0;
asm("movl $0xc0000001,%eax\n\t");
asm("cpuid\n\t");
asm("movb %%dl,%0\n\t" : "=m" (val));
val &= NEH_FLAGS_MASK;
via_flags |= val;
return (int) val;
}
INLINE int via_rng_in(void *buf)
{ int val;
asm("pushl %edi\n\t");
asm("movl %0,%%edi\n\t" : : "m" (buf));
asm("xorl %edx,%edx\n\t");
NEH_RNG
asm("andl $0x0000001f,%eax\n\t");
asm("movl %%eax,%0\n\t" : "=m" (val));
asm("popl %edi\n\t");
return val;
}
INLINE volatile void via_ecb_op5(
const void *k, const void *c, const void *s, void *d, int l)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
NEH_ECB;
asm("popl %ebx\n\t");
}
INLINE volatile void via_cbc_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
asm("movl %0, %%eax\n\t" : : "m" (v));
NEH_CBC;
asm("popl %ebx\n\t");
}
INLINE volatile void via_cbc_op7(
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
asm("movl %0, %%eax\n\t" : : "m" (v));
NEH_CBC;
asm("movl %eax,%esi\n\t");
asm("movl %0, %%edi\n\t" : : "m" (w));
asm("movsl; movsl; movsl; movsl\n\t");
asm("popl %ebx\n\t");
}
INLINE volatile void via_cfb_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
asm("movl %0, %%eax\n\t" : : "m" (v));
NEH_CFB;
asm("popl %ebx\n\t");
}
INLINE volatile void via_cfb_op7(
const void *k, const void *c, const void *s, void *d, int l, void *v, void *w)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
asm("movl %0, %%eax\n\t" : : "m" (v));
NEH_CFB;
asm("movl %eax,%esi\n\t");
asm("movl %0, %%edi\n\t" : : "m" (w));
asm("movsl; movsl; movsl; movsl\n\t");
asm("popl %ebx\n\t");
}
INLINE volatile void via_ofb_op6(
const void *k, const void *c, const void *s, void *d, int l, void *v)
{
asm("pushl %ebx\n\t");
NEH_REKEY;
asm("movl %0, %%ebx\n\t" : : "m" (k));
asm("movl %0, %%edx\n\t" : : "m" (c));
asm("movl %0, %%esi\n\t" : : "m" (s));
asm("movl %0, %%edi\n\t" : : "m" (d));
asm("movl %0, %%ecx\n\t" : : "m" (l));
asm("movl %0, %%eax\n\t" : : "m" (v));
NEH_OFB;
asm("popl %ebx\n\t");
}
#else
#error VIA ACE is not available with this compiler
#endif
INLINE int via_ace_test(void)
{
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_ACE_FLAGS) == NEH_ACE_FLAGS);
}
#define VIA_ACE_AVAILABLE (((via_flags & NEH_ACE_FLAGS) == NEH_ACE_FLAGS) \
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_ace_test())
INLINE int via_rng_test(void)
{
return has_cpuid() && is_via_cpu() && ((read_via_flags() & NEH_RNG_FLAGS) == NEH_RNG_FLAGS);
}
#define VIA_RNG_AVAILABLE (((via_flags & NEH_RNG_FLAGS) == NEH_RNG_FLAGS) \
|| (via_flags & NEH_CPU_READ) && (via_flags & NEH_CPU_IS_VIA) || via_rng_test())
INLINE int read_via_rng(void *buf, int count)
{ int nbr, max_reads, lcnt = count;
unsigned char *p, *q;
aligned_auto(unsigned char, bp, 64, 16);
if(!VIA_RNG_AVAILABLE)
return 0;
do
{
max_reads = MAX_READ_ATTEMPTS;
do
nbr = via_rng_in(bp);
while
(nbr == 0 && --max_reads);
lcnt -= nbr;
p = (unsigned char*)buf; q = bp;
while(nbr--)
*p++ = *q++;
}
while
(lcnt && max_reads);
return count - lcnt;
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
*/
#include "aesopt.h"
#include "aestab.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#define si(y,x,k,c) (s(y,c) = word_in(x, c) ^ (k)[c])
#define so(y,x,c) word_out(y, c, s(x,c))
#if defined(ARRAYS)
#define locals(y,x) x[4],y[4]
#else
#define locals(y,x) x##0,x##1,x##2,x##3,y##0,y##1,y##2,y##3
#endif
#define l_copy(y, x) s(y,0) = s(x,0); s(y,1) = s(x,1); \
s(y,2) = s(x,2); s(y,3) = s(x,3);
#define state_in(y,x,k) si(y,x,k,0); si(y,x,k,1); si(y,x,k,2); si(y,x,k,3)
#define state_out(y,x) so(y,x,0); so(y,x,1); so(y,x,2); so(y,x,3)
#define round(rm,y,x,k) rm(y,x,k,0); rm(y,x,k,1); rm(y,x,k,2); rm(y,x,k,3)
#if ( FUNCS_IN_C & ENCRYPTION_IN_C )
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
Pentium optimiation with small code but this is poor for decryption
so we need to control this with the following VC++ pragmas
*/
#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "s", on )
#endif
/* Given the column (c) of the output state variable, the following
macros give the input state variables which are needed in its
computation for each row (r) of the state. All the alternative
macros give the same end values but expand into different ways
of calculating these values. In particular the complex macro
used for dynamically variable block sizes is designed to expand
to a compile time constant whenever possible but will expand to
conditional clauses on some branches (I am grateful to Frank
Yellin for this construction)
*/
#define fwd_var(x,r,c)\
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
: r == 1 ? ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0))\
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
: ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2)))
#if defined(FT4_SET)
#undef dec_fmvars
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,n),fwd_var,rf1,c))
#elif defined(FT1_SET)
#undef dec_fmvars
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(f,n),fwd_var,rf1,c))
#else
#define fwd_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ fwd_mcol(no_table(x,t_use(s,box),fwd_var,rf1,c)))
#endif
#if defined(FL4_SET)
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(f,l),fwd_var,rf1,c))
#elif defined(FL1_SET)
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(f,l),fwd_var,rf1,c))
#else
#define fwd_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(s,box),fwd_var,rf1,c))
#endif
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out, const aes_encrypt_ctx cx[1])
{ uint_32t locals(b0, b1);
const uint_32t *kp;
#if defined( dec_fmvars )
dec_fmvars; /* declare variables for fwd_mcol() if needed */
#endif
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
return EXIT_FAILURE;
kp = cx->ks;
state_in(b0, in, kp);
#if (ENC_UNROLL == FULL)
switch(cx->inf.b[0])
{
case 14 * 16:
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
kp += 2 * N_COLS;
case 12 * 16:
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
kp += 2 * N_COLS;
case 10 * 16:
round(fwd_rnd, b1, b0, kp + 1 * N_COLS);
round(fwd_rnd, b0, b1, kp + 2 * N_COLS);
round(fwd_rnd, b1, b0, kp + 3 * N_COLS);
round(fwd_rnd, b0, b1, kp + 4 * N_COLS);
round(fwd_rnd, b1, b0, kp + 5 * N_COLS);
round(fwd_rnd, b0, b1, kp + 6 * N_COLS);
round(fwd_rnd, b1, b0, kp + 7 * N_COLS);
round(fwd_rnd, b0, b1, kp + 8 * N_COLS);
round(fwd_rnd, b1, b0, kp + 9 * N_COLS);
round(fwd_lrnd, b0, b1, kp +10 * N_COLS);
}
#else
#if (ENC_UNROLL == PARTIAL)
{ uint_32t rnd;
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
{
kp += N_COLS;
round(fwd_rnd, b1, b0, kp);
kp += N_COLS;
round(fwd_rnd, b0, b1, kp);
}
kp += N_COLS;
round(fwd_rnd, b1, b0, kp);
#else
{ uint_32t rnd;
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
{
kp += N_COLS;
round(fwd_rnd, b1, b0, kp);
l_copy(b0, b1);
}
#endif
kp += N_COLS;
round(fwd_lrnd, b0, b1, kp);
}
#endif
state_out(out, b0);
return EXIT_SUCCESS;
}
#endif
#if ( FUNCS_IN_C & DECRYPTION_IN_C)
/* Visual C++ .Net v7.1 provides the fastest encryption code when using
Pentium optimiation with small code but this is poor for decryption
so we need to control this with the following VC++ pragmas
*/
#if defined( _MSC_VER ) && !defined( _WIN64 )
#pragma optimize( "t", on )
#endif
/* Given the column (c) of the output state variable, the following
macros give the input state variables which are needed in its
computation for each row (r) of the state. All the alternative
macros give the same end values but expand into different ways
of calculating these values. In particular the complex macro
used for dynamically variable block sizes is designed to expand
to a compile time constant whenever possible but will expand to
conditional clauses on some branches (I am grateful to Frank
Yellin for this construction)
*/
#define inv_var(x,r,c)\
( r == 0 ? ( c == 0 ? s(x,0) : c == 1 ? s(x,1) : c == 2 ? s(x,2) : s(x,3))\
: r == 1 ? ( c == 0 ? s(x,3) : c == 1 ? s(x,0) : c == 2 ? s(x,1) : s(x,2))\
: r == 2 ? ( c == 0 ? s(x,2) : c == 1 ? s(x,3) : c == 2 ? s(x,0) : s(x,1))\
: ( c == 0 ? s(x,1) : c == 1 ? s(x,2) : c == 2 ? s(x,3) : s(x,0)))
#if defined(IT4_SET)
#undef dec_imvars
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,n),inv_var,rf1,c))
#elif defined(IT1_SET)
#undef dec_imvars
#define inv_rnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,upr,t_use(i,n),inv_var,rf1,c))
#else
#define inv_rnd(y,x,k,c) (s(y,c) = inv_mcol((k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c)))
#endif
#if defined(IL4_SET)
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ four_tables(x,t_use(i,l),inv_var,rf1,c))
#elif defined(IL1_SET)
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ one_table(x,ups,t_use(i,l),inv_var,rf1,c))
#else
#define inv_lrnd(y,x,k,c) (s(y,c) = (k)[c] ^ no_table(x,t_use(i,box),inv_var,rf1,c))
#endif
/* This code can work with the decryption key schedule in the */
/* order that is used for encrytpion (where the 1st decryption */
/* round key is at the high end ot the schedule) or with a key */
/* schedule that has been reversed to put the 1st decryption */
/* round key at the low end of the schedule in memory (when */
/* AES_REV_DKS is defined) */
#ifdef AES_REV_DKS
#define key_ofs 0
#define rnd_key(n) (kp + n * N_COLS)
#else
#define key_ofs 1
#define rnd_key(n) (kp - n * N_COLS)
#endif
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out, const aes_decrypt_ctx cx[1])
{ uint_32t locals(b0, b1);
#if defined( dec_imvars )
dec_imvars; /* declare variables for inv_mcol() if needed */
#endif
const uint_32t *kp;
if( cx->inf.b[0] != 10 * 16 && cx->inf.b[0] != 12 * 16 && cx->inf.b[0] != 14 * 16 )
return EXIT_FAILURE;
kp = cx->ks + (key_ofs ? (cx->inf.b[0] >> 2) : 0);
state_in(b0, in, kp);
#if (DEC_UNROLL == FULL)
kp = cx->ks + (key_ofs ? 0 : (cx->inf.b[0] >> 2));
switch(cx->inf.b[0])
{
case 14 * 16:
round(inv_rnd, b1, b0, rnd_key(-13));
round(inv_rnd, b0, b1, rnd_key(-12));
case 12 * 16:
round(inv_rnd, b1, b0, rnd_key(-11));
round(inv_rnd, b0, b1, rnd_key(-10));
case 10 * 16:
round(inv_rnd, b1, b0, rnd_key(-9));
round(inv_rnd, b0, b1, rnd_key(-8));
round(inv_rnd, b1, b0, rnd_key(-7));
round(inv_rnd, b0, b1, rnd_key(-6));
round(inv_rnd, b1, b0, rnd_key(-5));
round(inv_rnd, b0, b1, rnd_key(-4));
round(inv_rnd, b1, b0, rnd_key(-3));
round(inv_rnd, b0, b1, rnd_key(-2));
round(inv_rnd, b1, b0, rnd_key(-1));
round(inv_lrnd, b0, b1, rnd_key( 0));
}
#else
#if (DEC_UNROLL == PARTIAL)
{ uint_32t rnd;
for(rnd = 0; rnd < (cx->inf.b[0] >> 5) - 1; ++rnd)
{
kp = rnd_key(1);
round(inv_rnd, b1, b0, kp);
kp = rnd_key(1);
round(inv_rnd, b0, b1, kp);
}
kp = rnd_key(1);
round(inv_rnd, b1, b0, kp);
#else
{ uint_32t rnd;
for(rnd = 0; rnd < (cx->inf.b[0] >> 4) - 1; ++rnd)
{
kp = rnd_key(1);
round(inv_rnd, b1, b0, kp);
l_copy(b0, b1);
}
#endif
kp = rnd_key(1);
round(inv_lrnd, b0, b1, kp);
}
#endif
state_out(out, b0);
return EXIT_SUCCESS;
}
#endif
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
*/
#include "aesopt.h"
#include "aestab.h"
#ifdef USE_VIA_ACE_IF_PRESENT
# include "aes_via_ace.h"
#endif
#if defined(__cplusplus)
extern "C"
{
#endif
/* Initialise the key schedule from the user supplied key. The key
length can be specified in bytes, with legal values of 16, 24
and 32, or in bits, with legal values of 128, 192 and 256. These
values correspond with Nk values of 4, 6 and 8 respectively.
The following macros implement a single cycle in the key
schedule generation process. The number of cycles needed
for each cx->n_col and nk value is:
nk = 4 5 6 7 8
------------------------------
cx->n_col = 4 10 9 8 7 7
cx->n_col = 5 14 11 10 9 9
cx->n_col = 6 19 15 12 11 11
cx->n_col = 7 21 19 16 13 14
cx->n_col = 8 29 23 19 17 14
*/
#if defined( REDUCE_CODE_SIZE )
# define ls_box ls_sub
uint_32t ls_sub(const uint_32t t, const uint_32t n);
# define inv_mcol im_sub
uint_32t im_sub(const uint_32t x);
# ifdef ENC_KS_UNROLL
# undef ENC_KS_UNROLL
# endif
# ifdef DEC_KS_UNROLL
# undef DEC_KS_UNROLL
# endif
#endif
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
#if defined(AES_128) || defined( AES_VAR )
#define ke4(k,i) \
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
k[4*(i)+5] = ss[1] ^= ss[0]; \
k[4*(i)+6] = ss[2] ^= ss[1]; \
k[4*(i)+7] = ss[3] ^= ss[2]; \
}
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[4];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
#ifdef ENC_KS_UNROLL
ke4(cx->ks, 0); ke4(cx->ks, 1);
ke4(cx->ks, 2); ke4(cx->ks, 3);
ke4(cx->ks, 4); ke4(cx->ks, 5);
ke4(cx->ks, 6); ke4(cx->ks, 7);
ke4(cx->ks, 8);
#else
{ uint_32t i;
for(i = 0; i < 9; ++i)
ke4(cx->ks, i);
}
#endif
ke4(cx->ks, 9);
cx->inf.l = 0;
cx->inf.b[0] = 10 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined(AES_192) || defined( AES_VAR )
#define kef6(k,i) \
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
}
#define ke6(k,i) \
{ kef6(k,i); \
k[6*(i)+10] = ss[4] ^= ss[3]; \
k[6*(i)+11] = ss[5] ^= ss[4]; \
}
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[6];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
cx->ks[4] = ss[4] = word_in(key, 4);
cx->ks[5] = ss[5] = word_in(key, 5);
#ifdef ENC_KS_UNROLL
ke6(cx->ks, 0); ke6(cx->ks, 1);
ke6(cx->ks, 2); ke6(cx->ks, 3);
ke6(cx->ks, 4); ke6(cx->ks, 5);
ke6(cx->ks, 6);
#else
{ uint_32t i;
for(i = 0; i < 7; ++i)
ke6(cx->ks, i);
}
#endif
kef6(cx->ks, 7);
cx->inf.l = 0;
cx->inf.b[0] = 12 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined(AES_256) || defined( AES_VAR )
#define kef8(k,i) \
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
k[8*(i)+10] = ss[2] ^= ss[1]; \
k[8*(i)+11] = ss[3] ^= ss[2]; \
}
#define ke8(k,i) \
{ kef8(k,i); \
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
k[8*(i)+13] = ss[5] ^= ss[4]; \
k[8*(i)+14] = ss[6] ^= ss[5]; \
k[8*(i)+15] = ss[7] ^= ss[6]; \
}
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[8];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
cx->ks[4] = ss[4] = word_in(key, 4);
cx->ks[5] = ss[5] = word_in(key, 5);
cx->ks[6] = ss[6] = word_in(key, 6);
cx->ks[7] = ss[7] = word_in(key, 7);
#ifdef ENC_KS_UNROLL
ke8(cx->ks, 0); ke8(cx->ks, 1);
ke8(cx->ks, 2); ke8(cx->ks, 3);
ke8(cx->ks, 4); ke8(cx->ks, 5);
#else
{ uint_32t i;
for(i = 0; i < 6; ++i)
ke8(cx->ks, i);
}
#endif
kef8(cx->ks, 6);
cx->inf.l = 0;
cx->inf.b[0] = 14 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined( AES_VAR )
AES_RETURN aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
{
switch(key_len)
{
case 16: case 128: return aes_encrypt_key128(key, cx);
case 24: case 192: return aes_encrypt_key192(key, cx);
case 32: case 256: return aes_encrypt_key256(key, cx);
default: return EXIT_FAILURE;
}
}
#endif
#endif
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
/* this is used to store the decryption round keys */
/* in forward or reverse order */
#ifdef AES_REV_DKS
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
#else
#define v(n,i) (i)
#endif
#if DEC_ROUND == NO_TABLES
#define ff(x) (x)
#else
#define ff(x) inv_mcol(x)
#if defined( dec_imvars )
#define d_vars dec_imvars
#endif
#endif
#if defined(AES_128) || defined( AES_VAR )
#define k4e(k,i) \
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
}
#if 1
#define kdf4(k,i) \
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
ss[1] = ss[1] ^ ss[3]; \
ss[2] = ss[2] ^ ss[3]; \
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
ss[i % 4] ^= ss[4]; \
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
}
#define kd4(k,i) \
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
}
#define kdl4(k,i) \
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
k[v(40,(4*(i))+6)] = ss[0]; \
k[v(40,(4*(i))+7)] = ss[1]; \
}
#else
#define kdf4(k,i) \
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
}
#define kd4(k,i) \
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
}
#define kdl4(k,i) \
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
}
#endif
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[5];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
#ifdef DEC_KS_UNROLL
kdf4(cx->ks, 0); kd4(cx->ks, 1);
kd4(cx->ks, 2); kd4(cx->ks, 3);
kd4(cx->ks, 4); kd4(cx->ks, 5);
kd4(cx->ks, 6); kd4(cx->ks, 7);
kd4(cx->ks, 8); kdl4(cx->ks, 9);
#else
{ uint_32t i;
for(i = 0; i < 10; ++i)
k4e(cx->ks, i);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 10 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#endif
cx->inf.l = 0;
cx->inf.b[0] = 10 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined(AES_192) || defined( AES_VAR )
#define k6ef(k,i) \
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
}
#define k6e(k,i) \
{ k6ef(k,i); \
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
}
#define kdf6(k,i) \
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
}
#define kd6(k,i) \
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
}
#define kdl6(k,i) \
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
}
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[7];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
#ifdef DEC_KS_UNROLL
cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
kdf6(cx->ks, 0); kd6(cx->ks, 1);
kd6(cx->ks, 2); kd6(cx->ks, 3);
kd6(cx->ks, 4); kd6(cx->ks, 5);
kd6(cx->ks, 6); kdl6(cx->ks, 7);
#else
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
{ uint_32t i;
for(i = 0; i < 7; ++i)
k6e(cx->ks, i);
k6ef(cx->ks, 7);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 12 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#endif
cx->inf.l = 0;
cx->inf.b[0] = 12 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined(AES_256) || defined( AES_VAR )
#define k8ef(k,i) \
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
}
#define k8e(k,i) \
{ k8ef(k,i); \
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
}
#define kdf8(k,i) \
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
}
#define kd8(k,i) \
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
ss[8] = ls_box(ss[3],0); \
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
}
#define kdl8(k,i) \
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
}
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[9];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
#ifdef DEC_KS_UNROLL
cx->ks[v(56,(4))] = ff(ss[4] = word_in(key, 4));
cx->ks[v(56,(5))] = ff(ss[5] = word_in(key, 5));
cx->ks[v(56,(6))] = ff(ss[6] = word_in(key, 6));
cx->ks[v(56,(7))] = ff(ss[7] = word_in(key, 7));
kdf8(cx->ks, 0); kd8(cx->ks, 1);
kd8(cx->ks, 2); kd8(cx->ks, 3);
kd8(cx->ks, 4); kd8(cx->ks, 5);
kdl8(cx->ks, 6);
#else
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
{ uint_32t i;
for(i = 0; i < 6; ++i)
k8e(cx->ks, i);
k8ef(cx->ks, 6);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 14 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#endif
cx->inf.l = 0;
cx->inf.b[0] = 14 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
return EXIT_SUCCESS;
}
#endif
#if defined( AES_VAR )
AES_RETURN aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
{
switch(key_len)
{
case 16: case 128: return aes_decrypt_key128(key, cx);
case 24: case 192: return aes_decrypt_key192(key, cx);
case 32: case 256: return aes_decrypt_key256(key, cx);
default: return EXIT_FAILURE;
}
}
#endif
#endif
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
This file contains the compilation options for AES (Rijndael) and code
that is common across encryption, key scheduling and table generation.
OPERATION
These source code files implement the AES algorithm Rijndael designed by
Joan Daemen and Vincent Rijmen. This version is designed for the standard
block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
and 32 bytes).
This version is designed for flexibility and speed using operations on
32-bit words rather than operations on bytes. It can be compiled with
either big or little endian internal byte order but is faster when the
native byte order for the processor is used.
THE CIPHER INTERFACE
The cipher interface is implemented as an array of bytes in which lower
AES bit sequence indexes map to higher numeric significance within bytes.
uint_8t (an unsigned 8-bit type)
uint_32t (an unsigned 32-bit type)
struct aes_encrypt_ctx (structure for the cipher encryption context)
struct aes_decrypt_ctx (structure for the cipher decryption context)
AES_RETURN the function return type
C subroutine calls:
AES_RETURN aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
AES_RETURN aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
AES_RETURN aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
AES_RETURN aes_encrypt(const unsigned char *in, unsigned char *out,
const aes_encrypt_ctx cx[1]);
AES_RETURN aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
AES_RETURN aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
AES_RETURN aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
AES_RETURN aes_decrypt(const unsigned char *in, unsigned char *out,
const aes_decrypt_ctx cx[1]);
IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
you call aes_init() before AES is used so that the tables are initialised.
C++ aes class subroutines:
Class AESencrypt for encryption
Construtors:
AESencrypt(void)
AESencrypt(const unsigned char *key) - 128 bit key
Members:
AES_RETURN key128(const unsigned char *key)
AES_RETURN key192(const unsigned char *key)
AES_RETURN key256(const unsigned char *key)
AES_RETURN encrypt(const unsigned char *in, unsigned char *out) const
Class AESdecrypt for encryption
Construtors:
AESdecrypt(void)
AESdecrypt(const unsigned char *key) - 128 bit key
Members:
AES_RETURN key128(const unsigned char *key)
AES_RETURN key192(const unsigned char *key)
AES_RETURN key256(const unsigned char *key)
AES_RETURN decrypt(const unsigned char *in, unsigned char *out) const
*/
#if !defined( _AESOPT_H )
#define _AESOPT_H
#if defined( __cplusplus )
#include "aescpp.h"
#else
#include "aes.h"
#endif
/* PLATFORM SPECIFIC INCLUDES */
#include "brg_endian.h"
/* CONFIGURATION - THE USE OF DEFINES
Later in this section there are a number of defines that control the
operation of the code. In each section, the purpose of each define is
explained so that the relevant form can be included or excluded by
setting either 1's or 0's respectively on the branches of the related
#if clauses. The following local defines should not be changed.
*/
#define ENCRYPTION_IN_C 1
#define DECRYPTION_IN_C 2
#define ENC_KEYING_IN_C 4
#define DEC_KEYING_IN_C 8
#define NO_TABLES 0
#define ONE_TABLE 1
#define FOUR_TABLES 4
#define NONE 0
#define PARTIAL 1
#define FULL 2
/* --- START OF USER CONFIGURED OPTIONS --- */
/* 1. BYTE ORDER WITHIN 32 BIT WORDS
The fundamental data processing units in Rijndael are 8-bit bytes. The
input, output and key input are all enumerated arrays of bytes in which
bytes are numbered starting at zero and increasing to one less than the
number of bytes in the array in question. This enumeration is only used
for naming bytes and does not imply any adjacency or order relationship
from one byte to another. When these inputs and outputs are considered
as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
In this implementation bits are numbered from 0 to 7 starting at the
numerically least significant end of each byte (bit n represents 2^n).
However, Rijndael can be implemented more efficiently using 32-bit
words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
into word[n]. While in principle these bytes can be assembled into words
in any positions, this implementation only supports the two formats in
which bytes in adjacent positions within words also have adjacent byte
numbers. This order is called big-endian if the lowest numbered bytes
in words have the highest numeric significance and little-endian if the
opposite applies.
This code can work in either order irrespective of the order used by the
machine on which it runs. Normally the internal byte order will be set
to the order of the processor on which the code is to be run but this
define can be used to reverse this in special situations
WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
This define will hence be redefined later (in section 4) if necessary
*/
#if 1
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#elif 0
# define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
#elif 0
# define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
#else
# error The algorithm byte order is not defined
#endif
/* 2. VIA ACE SUPPORT */
#if !defined(__APPLE__) && defined( __GNUC__ ) && defined( __i386__ ) \
|| defined( _WIN32 ) && defined( _M_IX86 ) \
&& !(defined( _WIN64 ) || defined( _WIN32_WCE ) || defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
# define VIA_ACE_POSSIBLE
#endif
/* Define this option if support for the VIA ACE is required. This uses
inline assembler instructions and is only implemented for the Microsoft,
Intel and GCC compilers. If VIA ACE is known to be present, then defining
ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
it is detected (both present and enabled) but the normal AES code will
also be present.
When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
aligned; other input/output buffers do not need to be 16 byte aligned
but there are very large performance gains if this can be arranged.
VIA ACE also requires the decryption key schedule to be in reverse
order (which later checks below ensure).
*/
#if 1 && defined( VIA_ACE_POSSIBLE ) && !defined( USE_VIA_ACE_IF_PRESENT )
# define USE_VIA_ACE_IF_PRESENT
#endif
#if 0 && defined( VIA_ACE_POSSIBLE ) && !defined( ASSUME_VIA_ACE_PRESENT )
# define ASSUME_VIA_ACE_PRESENT
# endif
/* 3. ASSEMBLER SUPPORT
This define (which can be on the command line) enables the use of the
assembler code routines for encryption, decryption and key scheduling
as follows:
ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
encryption and decryption and but with key scheduling in C
ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
encryption, decryption and key scheduling
ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
encryption and decryption and but with key scheduling in C
ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
encryption and decryption and but with key scheduling in C
Change one 'if 0' below to 'if 1' to select the version or define
as a compilation option.
*/
#if 0 && !defined( ASM_X86_V1C )
# define ASM_X86_V1C
#elif 0 && !defined( ASM_X86_V2 )
# define ASM_X86_V2
#elif 0 && !defined( ASM_X86_V2C )
# define ASM_X86_V2C
#elif 0 && !defined( ASM_AMD64_C )
# define ASM_AMD64_C
#endif
#if (defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )) \
&& !defined( _M_IX86 ) || defined( ASM_AMD64_C ) && !defined( _M_X64 )
# error Assembler code is only available for x86 and AMD64 systems
#endif
/* 4. FAST INPUT/OUTPUT OPERATIONS.
On some machines it is possible to improve speed by transferring the
bytes in the input and output arrays to and from the internal 32-bit
variables by addressing these arrays as if they are arrays of 32-bit
words. On some machines this will always be possible but there may
be a large performance penalty if the byte arrays are not aligned on
the normal word boundaries. On other machines this technique will
lead to memory access errors when such 32-bit word accesses are not
properly aligned. The option SAFE_IO avoids such problems but will
often be slower on those machines that support misaligned access
(especially so if care is taken to align the input and output byte
arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
assumed that access to byte arrays as if they are arrays of 32-bit
words will not cause problems when such accesses are misaligned.
*/
#if 1 && !defined( _MSC_VER )
# define SAFE_IO
#endif
/* 5. LOOP UNROLLING
The code for encryption and decrytpion cycles through a number of rounds
that can be implemented either in a loop or by expanding the code into a
long sequence of instructions, the latter producing a larger program but
one that will often be much faster. The latter is called loop unrolling.
There are also potential speed advantages in expanding two iterations in
a loop with half the number of iterations, which is called partial loop
unrolling. The following options allow partial or full loop unrolling
to be set independently for encryption and decryption
*/
#if 1
# define ENC_UNROLL FULL
#elif 0
# define ENC_UNROLL PARTIAL
#else
# define ENC_UNROLL NONE
#endif
#if 1
# define DEC_UNROLL FULL
#elif 0
# define DEC_UNROLL PARTIAL
#else
# define DEC_UNROLL NONE
#endif
#if 1
# define ENC_KS_UNROLL
#endif
#if 1
# define DEC_KS_UNROLL
#endif
/* 6. FAST FINITE FIELD OPERATIONS
If this section is included, tables are used to provide faster finite
field arithmetic (this has no effect if FIXED_TABLES is defined).
*/
#if 1
# define FF_TABLES
#endif
/* 7. INTERNAL STATE VARIABLE FORMAT
The internal state of Rijndael is stored in a number of local 32-bit
word varaibles which can be defined either as an array or as individual
names variables. Include this section if you want to store these local
varaibles in arrays. Otherwise individual local variables will be used.
*/
#if 1
# define ARRAYS
#endif
/* 8. FIXED OR DYNAMIC TABLES
When this section is included the tables used by the code are compiled
statically into the binary file. Otherwise the subroutine aes_init()
must be called to compute them before the code is first used.
*/
#if 1 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
# define FIXED_TABLES
#endif
/* 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
In some systems it is better to mask longer values to extract bytes
rather than using a cast. This option allows this choice.
*/
#if 0
# define to_byte(x) ((uint_8t)(x))
#else
# define to_byte(x) ((x) & 0xff)
#endif
/* 10. TABLE ALIGNMENT
On some sytsems speed will be improved by aligning the AES large lookup
tables on particular boundaries. This define should be set to a power of
two giving the desired alignment. It can be left undefined if alignment
is not needed. This option is specific to the Microsft VC++ compiler -
it seems to sometimes cause trouble for the VC++ version 6 compiler.
*/
#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
# define TABLE_ALIGN 32
#endif
/* 11. REDUCE CODE AND TABLE SIZE
This replaces some expanded macros with function calls if AES_ASM_V2 or
AES_ASM_V2C are defined
*/
#if 1 && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C ))
# define REDUCE_CODE_SIZE
#endif
/* 12. TABLE OPTIONS
This cipher proceeds by repeating in a number of cycles known as 'rounds'
which are implemented by a round function which can optionally be speeded
up using tables. The basic tables are each 256 32-bit words, with either
one or four tables being required for each round function depending on
how much speed is required. The encryption and decryption round functions
are different and the last encryption and decrytpion round functions are
different again making four different round functions in all.
This means that:
1. Normal encryption and decryption rounds can each use either 0, 1
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
2. The last encryption and decryption rounds can also use either 0, 1
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
Include or exclude the appropriate definitions below to set the number
of tables used by this implementation.
*/
#if 1 /* set tables for the normal encryption round */
# define ENC_ROUND FOUR_TABLES
#elif 0
# define ENC_ROUND ONE_TABLE
#else
# define ENC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the last encryption round */
# define LAST_ENC_ROUND FOUR_TABLES
#elif 0
# define LAST_ENC_ROUND ONE_TABLE
#else
# define LAST_ENC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the normal decryption round */
# define DEC_ROUND FOUR_TABLES
#elif 0
# define DEC_ROUND ONE_TABLE
#else
# define DEC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the last decryption round */
# define LAST_DEC_ROUND FOUR_TABLES
#elif 0
# define LAST_DEC_ROUND ONE_TABLE
#else
# define LAST_DEC_ROUND NO_TABLES
#endif
/* The decryption key schedule can be speeded up with tables in the same
way that the round functions can. Include or exclude the following
defines to set this requirement.
*/
#if 1
# define KEY_SCHED FOUR_TABLES
#elif 0
# define KEY_SCHED ONE_TABLE
#else
# define KEY_SCHED NO_TABLES
#endif
/* ---- END OF USER CONFIGURED OPTIONS ---- */
/* VIA ACE support is only available for VC++ and GCC */
#if !defined( _MSC_VER ) && !defined( __GNUC__ )
# if defined( ASSUME_VIA_ACE_PRESENT )
# undef ASSUME_VIA_ACE_PRESENT
# endif
# if defined( USE_VIA_ACE_IF_PRESENT )
# undef USE_VIA_ACE_IF_PRESENT
# endif
#endif
#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
# define USE_VIA_ACE_IF_PRESENT
#endif
#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
# define AES_REV_DKS
#endif
/* Assembler support requires the use of platform byte order */
#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) \
&& (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
# undef ALGORITHM_BYTE_ORDER
# define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
#endif
/* In this implementation the columns of the state array are each held in
32-bit words. The state array can be held in various ways: in an array
of words, in a number of individual word variables or in a number of
processor registers. The following define maps a variable name x and
a column number c to the way the state array variable is to be held.
The first define below maps the state into an array x[c] whereas the
second form maps the state into a number of individual variables x0,
x1, etc. Another form could map individual state colums to machine
register names.
*/
#if defined( ARRAYS )
# define s(x,c) x[c]
#else
# define s(x,c) x##c
#endif
/* This implementation provides subroutines for encryption, decryption
and for setting the three key lengths (separately) for encryption
and decryption. Since not all functions are needed, masks are set
up here to determine which will be implemented in C
*/
#if !defined( AES_ENCRYPT )
# define EFUNCS_IN_C 0
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
# define EFUNCS_IN_C ENC_KEYING_IN_C
#elif !defined( ASM_X86_V2 )
# define EFUNCS_IN_C ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
#else
# define EFUNCS_IN_C 0
#endif
#if !defined( AES_DECRYPT )
# define DFUNCS_IN_C 0
#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C ) \
|| defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
# define DFUNCS_IN_C DEC_KEYING_IN_C
#elif !defined( ASM_X86_V2 )
# define DFUNCS_IN_C ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
#else
# define DFUNCS_IN_C 0
#endif
#define FUNCS_IN_C ( EFUNCS_IN_C | DFUNCS_IN_C )
/* END OF CONFIGURATION OPTIONS */
#define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
/* Disable or report errors on some combinations of options */
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
# undef LAST_ENC_ROUND
# define LAST_ENC_ROUND NO_TABLES
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
# undef LAST_ENC_ROUND
# define LAST_ENC_ROUND ONE_TABLE
#endif
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
# undef ENC_UNROLL
# define ENC_UNROLL NONE
#endif
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
# undef LAST_DEC_ROUND
# define LAST_DEC_ROUND NO_TABLES
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
# undef LAST_DEC_ROUND
# define LAST_DEC_ROUND ONE_TABLE
#endif
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
# undef DEC_UNROLL
# define DEC_UNROLL NONE
#endif
#if defined( bswap32 )
# define aes_sw32 bswap32
#elif defined( bswap_32 )
# define aes_sw32 bswap_32
#else
# define brot(x,n) (((uint_32t)(x) << n) | ((uint_32t)(x) >> (32 - n)))
# define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
#endif
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
higher index positions with wrap around into low positions
ups(x,n): moves bytes by n positions to higher index positions in
words but without wrap around
bval(x,n): extracts a byte from a word
WARNING: The definitions given here are intended only for use with
unsigned variables and with shift counts that are compile
time constants
*/
#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
# define upr(x,n) (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
# define ups(x,n) ((uint_32t) (x) << (8 * (n)))
# define bval(x,n) to_byte((x) >> (8 * (n)))
# define bytes2word(b0, b1, b2, b3) \
(((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
#endif
#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
# define upr(x,n) (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
# define ups(x,n) ((uint_32t) (x) >> (8 * (n)))
# define bval(x,n) to_byte((x) >> (24 - 8 * (n)))
# define bytes2word(b0, b1, b2, b3) \
(((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
#endif
#if defined( SAFE_IO )
# define word_in(x,c) bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
# define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
# define word_in(x,c) (*((uint_32t*)(x)+(c)))
# define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
#else
# define word_in(x,c) aes_sw32(*((uint_32t*)(x)+(c)))
# define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
#endif
/* the finite field modular polynomial and elements */
#define WPOLY 0x011b
#define BPOLY 0x1b
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
#define gf_c1 0x80808080
#define gf_c2 0x7f7f7f7f
#define gf_mulx(x) ((((x) & gf_c2) << 1) ^ ((((x) & gf_c1) >> 7) * BPOLY))
/* The following defines provide alternative definitions of gf_mulx that might
give improved performance if a fast 32-bit multiply is not available. Note
that a temporary variable u needs to be defined where gf_mulx is used.
#define gf_mulx(x) (u = (x) & gf_c1, u |= (u >> 1), ((x) & gf_c2) << 1) ^ ((u >> 3) | (u >> 6))
#define gf_c4 (0x01010101 * BPOLY)
#define gf_mulx(x) (u = (x) & gf_c1, ((x) & gf_c2) << 1) ^ ((u - (u >> 7)) & gf_c4)
*/
/* Work out which tables are needed for the different options */
#if defined( ASM_X86_V1C )
# if defined( ENC_ROUND )
# undef ENC_ROUND
# endif
# define ENC_ROUND FOUR_TABLES
# if defined( LAST_ENC_ROUND )
# undef LAST_ENC_ROUND
# endif
# define LAST_ENC_ROUND FOUR_TABLES
# if defined( DEC_ROUND )
# undef DEC_ROUND
# endif
# define DEC_ROUND FOUR_TABLES
# if defined( LAST_DEC_ROUND )
# undef LAST_DEC_ROUND
# endif
# define LAST_DEC_ROUND FOUR_TABLES
# if defined( KEY_SCHED )
# undef KEY_SCHED
# define KEY_SCHED FOUR_TABLES
# endif
#endif
#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
# if ENC_ROUND == ONE_TABLE
# define FT1_SET
# elif ENC_ROUND == FOUR_TABLES
# define FT4_SET
# else
# define SBX_SET
# endif
# if LAST_ENC_ROUND == ONE_TABLE
# define FL1_SET
# elif LAST_ENC_ROUND == FOUR_TABLES
# define FL4_SET
# elif !defined( SBX_SET )
# define SBX_SET
# endif
#endif
#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
# if DEC_ROUND == ONE_TABLE
# define IT1_SET
# elif DEC_ROUND == FOUR_TABLES
# define IT4_SET
# else
# define ISB_SET
# endif
# if LAST_DEC_ROUND == ONE_TABLE
# define IL1_SET
# elif LAST_DEC_ROUND == FOUR_TABLES
# define IL4_SET
# elif !defined(ISB_SET)
# define ISB_SET
# endif
#endif
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
# if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
# if KEY_SCHED == ONE_TABLE
# if !defined( FL1_SET ) && !defined( FL4_SET )
# define LS1_SET
# endif
# elif KEY_SCHED == FOUR_TABLES
# if !defined( FL4_SET )
# define LS4_SET
# endif
# elif !defined( SBX_SET )
# define SBX_SET
# endif
# endif
# if (FUNCS_IN_C & DEC_KEYING_IN_C)
# if KEY_SCHED == ONE_TABLE
# define IM1_SET
# elif KEY_SCHED == FOUR_TABLES
# define IM4_SET
# elif !defined( SBX_SET )
# define SBX_SET
# endif
# endif
#endif
/* generic definitions of Rijndael macros that use tables */
#define no_table(x,box,vf,rf,c) bytes2word( \
box[bval(vf(x,0,c),rf(0,c))], \
box[bval(vf(x,1,c),rf(1,c))], \
box[bval(vf(x,2,c),rf(2,c))], \
box[bval(vf(x,3,c),rf(3,c))])
#define one_table(x,op,tab,vf,rf,c) \
( tab[bval(vf(x,0,c),rf(0,c))] \
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
#define four_tables(x,tab,vf,rf,c) \
( tab[0][bval(vf(x,0,c),rf(0,c))] \
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
^ tab[3][bval(vf(x,3,c),rf(3,c))])
#define vf1(x,r,c) (x)
#define rf1(r,c) (r)
#define rf2(r,c) ((8+r-c)&3)
/* perform forward and inverse column mix operation on four bytes in long word x in */
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
#if !(defined( REDUCE_CODE_SIZE ) && (defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )))
#if defined( FM4_SET ) /* not currently used */
# define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
#elif defined( FM1_SET ) /* not currently used */
# define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
#else
# define dec_fmvars uint_32t g2
# define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
#endif
#if defined( IM4_SET )
# define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
#elif defined( IM1_SET )
# define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
#else
# define dec_imvars uint_32t g2, g4, g9
# define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
(x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
#endif
#if defined( FL4_SET )
# define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
#elif defined( LS4_SET )
# define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
#elif defined( FL1_SET )
# define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
#elif defined( LS1_SET )
# define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
#else
# define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
#endif
#endif
#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
# define ISB_SET
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
*/
#define DO_TABLES
#include "aes.h"
#include "aesopt.h"
#if defined(FIXED_TABLES)
#define sb_data(w) {\
w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\
w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\
w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\
w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\
w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\
w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\
w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\
w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\
w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\
w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\
w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\
w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\
w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\
w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\
w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\
w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\
w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\
w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\
w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\
w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\
w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\
w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\
w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\
w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\
w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\
w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\
w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\
w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\
w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\
w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\
w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\
w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) }
#define isb_data(w) {\
w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\
w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\
w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\
w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\
w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\
w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\
w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\
w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\
w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\
w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\
w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\
w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\
w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\
w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\
w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\
w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\
w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\
w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\
w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\
w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\
w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\
w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\
w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\
w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\
w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\
w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\
w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\
w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\
w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\
w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\
w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\
w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) }
#define mm_data(w) {\
w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\
w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\
w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\
w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\
w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\
w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\
w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\
w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\
w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\
w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\
w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\
w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\
w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\
w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\
w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\
w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\
w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\
w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\
w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\
w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\
w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\
w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\
w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\
w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\
w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\
w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\
w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\
w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\
w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\
w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\
w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\
w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) }
#define rc_data(w) {\
w(0x01), w(0x02), w(0x04), w(0x08), w(0x10),w(0x20), w(0x40), w(0x80),\
w(0x1b), w(0x36) }
#define h0(x) (x)
#define w0(p) bytes2word(p, 0, 0, 0)
#define w1(p) bytes2word(0, p, 0, 0)
#define w2(p) bytes2word(0, 0, p, 0)
#define w3(p) bytes2word(0, 0, 0, p)
#define u0(p) bytes2word(f2(p), p, p, f3(p))
#define u1(p) bytes2word(f3(p), f2(p), p, p)
#define u2(p) bytes2word(p, f3(p), f2(p), p)
#define u3(p) bytes2word(p, p, f3(p), f2(p))
#define v0(p) bytes2word(fe(p), f9(p), fd(p), fb(p))
#define v1(p) bytes2word(fb(p), fe(p), f9(p), fd(p))
#define v2(p) bytes2word(fd(p), fb(p), fe(p), f9(p))
#define v3(p) bytes2word(f9(p), fd(p), fb(p), fe(p))
#endif
#if defined(FIXED_TABLES) || !defined(FF_TABLES)
#define f2(x) ((x<<1) ^ (((x>>7) & 1) * WPOLY))
#define f4(x) ((x<<2) ^ (((x>>6) & 1) * WPOLY) ^ (((x>>6) & 2) * WPOLY))
#define f8(x) ((x<<3) ^ (((x>>5) & 1) * WPOLY) ^ (((x>>5) & 2) * WPOLY) \
^ (((x>>5) & 4) * WPOLY))
#define f3(x) (f2(x) ^ x)
#define f9(x) (f8(x) ^ x)
#define fb(x) (f8(x) ^ f2(x) ^ x)
#define fd(x) (f8(x) ^ f4(x) ^ x)
#define fe(x) (f8(x) ^ f4(x) ^ f2(x))
#else
#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)
#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)
#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)
#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)
#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)
#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)
#endif
#include "aestab.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#if defined(FIXED_TABLES)
/* implemented in case of wrong call for fixed tables */
AES_RETURN aes_init(void)
{
return EXIT_SUCCESS;
}
#else /* Generate the tables for the dynamic table option */
#if defined(FF_TABLES)
#define gf_inv(x) ((x) ? pow[ 255 - log[x]] : 0)
#else
/* It will generally be sensible to use tables to compute finite
field multiplies and inverses but where memory is scarse this
code might sometimes be better. But it only has effect during
initialisation so its pretty unimportant in overall terms.
*/
/* return 2 ^ (n - 1) where n is the bit number of the highest bit
set in x with x in the range 1 < x < 0x00000200. This form is
used so that locals within fi can be bytes rather than words
*/
static uint_8t hibit(const uint_32t x)
{ uint_8t r = (uint_8t)((x >> 1) | (x >> 2));
r |= (r >> 2);
r |= (r >> 4);
return (r + 1) >> 1;
}
/* return the inverse of the finite field element x */
static uint_8t gf_inv(const uint_8t x)
{ uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0;
if(x < 2)
return x;
for( ; ; )
{
if(n1)
while(n2 >= n1) /* divide polynomial p2 by p1 */
{
n2 /= n1; /* shift smaller polynomial left */
p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */
v2 ^= v1 * n2; /* shift accumulated value and */
n2 = hibit(p2); /* add into result */
}
else
return v1;
if(n2) /* repeat with values swapped */
while(n1 >= n2)
{
n1 /= n2;
p1 ^= p2 * n1;
v1 ^= v2 * n1;
n1 = hibit(p1);
}
else
return v2;
}
}
#endif
/* The forward and inverse affine transformations used in the S-box */
uint_8t fwd_affine(const uint_8t x)
{ uint_32t w = x;
w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4);
return 0x63 ^ ((w ^ (w >> 8)) & 0xff);
}
uint_8t inv_affine(const uint_8t x)
{ uint_32t w = x;
w = (w << 1) ^ (w << 3) ^ (w << 6);
return 0x05 ^ ((w ^ (w >> 8)) & 0xff);
}
static int init = 0;
AES_RETURN aes_init(void)
{ uint_32t i, w;
#if defined(FF_TABLES)
uint_8t pow[512], log[256];
if(init)
return EXIT_SUCCESS;
/* log and power tables for GF(2^8) finite field with
WPOLY as modular polynomial - the simplest primitive
root is 0x03, used here to generate the tables
*/
i = 0; w = 1;
do
{
pow[i] = (uint_8t)w;
pow[i + 255] = (uint_8t)w;
log[w] = (uint_8t)i++;
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);
}
while (w != 1);
#else
if(init)
return EXIT_SUCCESS;
#endif
for(i = 0, w = 1; i < RC_LENGTH; ++i)
{
t_set(r,c)[i] = bytes2word(w, 0, 0, 0);
w = f2(w);
}
for(i = 0; i < 256; ++i)
{ uint_8t b;
b = fwd_affine(gf_inv((uint_8t)i));
w = bytes2word(f2(b), b, b, f3(b));
#if defined( SBX_SET )
t_set(s,box)[i] = b;
#endif
#if defined( FT1_SET ) /* tables for a normal encryption round */
t_set(f,n)[i] = w;
#endif
#if defined( FT4_SET )
t_set(f,n)[0][i] = w;
t_set(f,n)[1][i] = upr(w,1);
t_set(f,n)[2][i] = upr(w,2);
t_set(f,n)[3][i] = upr(w,3);
#endif
w = bytes2word(b, 0, 0, 0);
#if defined( FL1_SET ) /* tables for last encryption round (may also */
t_set(f,l)[i] = w; /* be used in the key schedule) */
#endif
#if defined( FL4_SET )
t_set(f,l)[0][i] = w;
t_set(f,l)[1][i] = upr(w,1);
t_set(f,l)[2][i] = upr(w,2);
t_set(f,l)[3][i] = upr(w,3);
#endif
#if defined( LS1_SET ) /* table for key schedule if t_set(f,l) above is*/
t_set(l,s)[i] = w; /* not of the required form */
#endif
#if defined( LS4_SET )
t_set(l,s)[0][i] = w;
t_set(l,s)[1][i] = upr(w,1);
t_set(l,s)[2][i] = upr(w,2);
t_set(l,s)[3][i] = upr(w,3);
#endif
b = gf_inv(inv_affine((uint_8t)i));
w = bytes2word(fe(b), f9(b), fd(b), fb(b));
#if defined( IM1_SET ) /* tables for the inverse mix column operation */
t_set(i,m)[b] = w;
#endif
#if defined( IM4_SET )
t_set(i,m)[0][b] = w;
t_set(i,m)[1][b] = upr(w,1);
t_set(i,m)[2][b] = upr(w,2);
t_set(i,m)[3][b] = upr(w,3);
#endif
#if defined( ISB_SET )
t_set(i,box)[i] = b;
#endif
#if defined( IT1_SET ) /* tables for a normal decryption round */
t_set(i,n)[i] = w;
#endif
#if defined( IT4_SET )
t_set(i,n)[0][i] = w;
t_set(i,n)[1][i] = upr(w,1);
t_set(i,n)[2][i] = upr(w,2);
t_set(i,n)[3][i] = upr(w,3);
#endif
w = bytes2word(b, 0, 0, 0);
#if defined( IL1_SET ) /* tables for last decryption round */
t_set(i,l)[i] = w;
#endif
#if defined( IL4_SET )
t_set(i,l)[0][i] = w;
t_set(i,l)[1][i] = upr(w,1);
t_set(i,l)[2][i] = upr(w,2);
t_set(i,l)[3][i] = upr(w,3);
#endif
}
init = 1;
return EXIT_SUCCESS;
}
#endif
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
This file contains the code for declaring the tables needed to implement
AES. The file aesopt.h is assumed to be included before this header file.
If there are no global variables, the definitions here can be used to put
the AES tables in a structure so that a pointer can then be added to the
AES context to pass them to the AES routines that need them. If this
facility is used, the calling program has to ensure that this pointer is
managed appropriately. In particular, the value of the t_dec(in,it) item
in the table structure must be set to zero in order to ensure that the
tables are initialised. In practice the three code sequences in aeskey.c
that control the calls to aes_init() and the aes_init() routine itself will
have to be changed for a specific implementation. If global variables are
available it will generally be preferable to use them with the precomputed
FIXED_TABLES option that uses static global tables.
The following defines can be used to control the way the tables
are defined, initialised and used in embedded environments that
require special features for these purposes
the 't_dec' construction is used to declare fixed table arrays
the 't_set' construction is used to set fixed table values
the 't_use' construction is used to access fixed table values
256 byte tables:
t_xxx(s,box) => forward S box
t_xxx(i,box) => inverse S box
256 32-bit word OR 4 x 256 32-bit word tables:
t_xxx(f,n) => forward normal round
t_xxx(f,l) => forward last round
t_xxx(i,n) => inverse normal round
t_xxx(i,l) => inverse last round
t_xxx(l,s) => key schedule table
t_xxx(i,m) => key schedule table
Other variables and tables:
t_xxx(r,c) => the rcon table
*/
#if !defined( _AESTAB_H )
#define _AESTAB_H
#if defined(__cplusplus)
extern "C" {
#endif
#define t_dec(m,n) t_##m##n
#define t_set(m,n) t_##m##n
#define t_use(m,n) t_##m##n
#if defined(FIXED_TABLES)
# if !defined( __GNUC__ ) && (defined( __MSDOS__ ) || defined( __WIN16__ ))
/* make tables far data to avoid using too much DGROUP space (PG) */
# define CONST const far
# else
# define CONST const
# endif
#else
# define CONST
#endif
#if defined(DO_TABLES)
# define EXTERN
#else
# define EXTERN extern
#endif
#if defined(_MSC_VER) && defined(TABLE_ALIGN)
#define ALIGN __declspec(align(TABLE_ALIGN))
#else
#define ALIGN
#endif
#if defined( __WATCOMC__ ) && ( __WATCOMC__ >= 1100 )
# define XP_DIR __cdecl
#else
# define XP_DIR
#endif
#if defined(DO_TABLES) && defined(FIXED_TABLES)
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256] = b(e)
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256] = { b(e), b(f), b(g), b(h) }
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH] = rc_data(w0);
#else
#define d_1(t,n,b,e) EXTERN ALIGN CONST XP_DIR t n[256]
#define d_4(t,n,b,e,f,g,h) EXTERN ALIGN CONST XP_DIR t n[4][256]
EXTERN ALIGN CONST uint_32t t_dec(r,c)[RC_LENGTH];
#endif
#if defined( SBX_SET )
d_1(uint_8t, t_dec(s,box), sb_data, h0);
#endif
#if defined( ISB_SET )
d_1(uint_8t, t_dec(i,box), isb_data, h0);
#endif
#if defined( FT1_SET )
d_1(uint_32t, t_dec(f,n), sb_data, u0);
#endif
#if defined( FT4_SET )
d_4(uint_32t, t_dec(f,n), sb_data, u0, u1, u2, u3);
#endif
#if defined( FL1_SET )
d_1(uint_32t, t_dec(f,l), sb_data, w0);
#endif
#if defined( FL4_SET )
d_4(uint_32t, t_dec(f,l), sb_data, w0, w1, w2, w3);
#endif
#if defined( IT1_SET )
d_1(uint_32t, t_dec(i,n), isb_data, v0);
#endif
#if defined( IT4_SET )
d_4(uint_32t, t_dec(i,n), isb_data, v0, v1, v2, v3);
#endif
#if defined( IL1_SET )
d_1(uint_32t, t_dec(i,l), isb_data, w0);
#endif
#if defined( IL4_SET )
d_4(uint_32t, t_dec(i,l), isb_data, w0, w1, w2, w3);
#endif
#if defined( LS1_SET )
#if defined( FL1_SET )
#undef LS1_SET
#else
d_1(uint_32t, t_dec(l,s), sb_data, w0);
#endif
#endif
#if defined( LS4_SET )
#if defined( FL4_SET )
#undef LS4_SET
#else
d_4(uint_32t, t_dec(l,s), sb_data, w0, w1, w2, w3);
#endif
#endif
#if defined( IM1_SET )
d_1(uint_32t, t_dec(i,m), mm_data, v0);
#endif
#if defined( IM4_SET )
d_4(uint_32t, t_dec(i,m), mm_data, v0, v1, v2, v3);
#endif
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
*/
#ifndef _BRG_ENDIAN_H
#define _BRG_ENDIAN_H
#define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
#define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
/* Include files where endian defines and byteswap functions may reside */
#if defined( __sun )
# include <sys/isa_defs.h>
#elif defined( __FreeBSD__ ) || defined( __OpenBSD__ ) || defined( __NetBSD__ )
# include <sys/endian.h>
#elif defined( BSD ) && ( BSD >= 199103 ) || defined( __APPLE__ ) || \
defined( __CYGWIN32__ ) || defined( __DJGPP__ ) || defined( __osf__ )
# include <machine/endian.h>
#elif defined( __linux__ ) || defined( __GNUC__ ) || defined( __GNU_LIBRARY__ )
# if !defined( __MINGW32__ ) && !defined( _AIX )
# include <endian.h>
# if !defined( __BEOS__ )
# include <byteswap.h>
# endif
# endif
#endif
/* Now attempt to set the define for platform byte order using any */
/* of the four forms SYMBOL, _SYMBOL, __SYMBOL & __SYMBOL__, which */
/* seem to encompass most endian symbol definitions */
#if defined( BIG_ENDIAN ) && defined( LITTLE_ENDIAN )
# if defined( BYTE_ORDER ) && BYTE_ORDER == BIG_ENDIAN
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
# elif defined( BYTE_ORDER ) && BYTE_ORDER == LITTLE_ENDIAN
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
# endif
#elif defined( BIG_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#elif defined( LITTLE_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif
#if defined( _BIG_ENDIAN ) && defined( _LITTLE_ENDIAN )
# if defined( _BYTE_ORDER ) && _BYTE_ORDER == _BIG_ENDIAN
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
# elif defined( _BYTE_ORDER ) && _BYTE_ORDER == _LITTLE_ENDIAN
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
# endif
#elif defined( _BIG_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#elif defined( _LITTLE_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif
#if defined( __BIG_ENDIAN ) && defined( __LITTLE_ENDIAN )
# if defined( __BYTE_ORDER ) && __BYTE_ORDER == __BIG_ENDIAN
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
# elif defined( __BYTE_ORDER ) && __BYTE_ORDER == __LITTLE_ENDIAN
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
# endif
#elif defined( __BIG_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#elif defined( __LITTLE_ENDIAN )
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif
#if defined( __BIG_ENDIAN__ ) && defined( __LITTLE_ENDIAN__ )
# if defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __BIG_ENDIAN__
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
# elif defined( __BYTE_ORDER__ ) && __BYTE_ORDER__ == __LITTLE_ENDIAN__
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
# endif
#elif defined( __BIG_ENDIAN__ )
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#elif defined( __LITTLE_ENDIAN__ )
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#endif
/* if the platform byte order could not be determined, then try to */
/* set this define using common machine defines */
#if !defined(PLATFORM_BYTE_ORDER)
#if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
defined( vax ) || defined( vms ) || defined( VMS ) || \
defined( __VMS ) || defined( _M_X64 )
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
defined( __VOS__ ) || defined( __TIGCC__ ) || defined( __TANDEM ) || \
defined( THINK_C ) || defined( __VMCMS__ ) || defined( _AIX )
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
# define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
#elif 0 /* **** EDIT HERE IF NECESSARY **** */
# define PLATFORM_BYTE_ORDER IS_BIG_ENDIAN
#else
# error Please edit lines 126 or 128 in brg_endian.h to set the platform byte order
#endif
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2010, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 20/12/2007
The unsigned integer types defined here are of the form uint_<nn>t where
<nn> is the length of the type; for example, the unsigned 32-bit type is
'uint_32t'. These are NOT the same as the 'C99 integer types' that are
defined in the inttypes.h and stdint.h headers since attempts to use these
types have shown that support for them is still highly variable. However,
since the latter are of the form uint<nn>_t, a regular expression search
and replace (in VC++ search on 'uint_{:z}t' and replace with 'uint\1_t')
can be used to convert the types used here to the C99 standard types.
*/
#ifndef _BRG_TYPES_H
#define _BRG_TYPES_H
#if defined(__cplusplus)
extern "C" {
#endif
#include <limits.h>
#if defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
# include <stddef.h>
# define ptrint_t intptr_t
#elif defined( __ECOS__ )
# define intptr_t unsigned int
# define ptrint_t intptr_t
#elif defined( __GNUC__ ) && ( __GNUC__ >= 3 )
# include <stdint.h>
# define ptrint_t intptr_t
#else
# define ptrint_t int
#endif
#ifndef BRG_UI8
# define BRG_UI8
# if UCHAR_MAX == 255u
typedef unsigned char uint_8t;
# else
# error Please define uint_8t as an 8-bit unsigned integer type in brg_types.h
# endif
#endif
#ifndef BRG_UI16
# define BRG_UI16
# if USHRT_MAX == 65535u
typedef unsigned short uint_16t;
# else
# error Please define uint_16t as a 16-bit unsigned short type in brg_types.h
# endif
#endif
#ifndef BRG_UI32
# define BRG_UI32
# if UINT_MAX == 4294967295u
# define li_32(h) 0x##h##u
typedef unsigned int uint_32t;
# elif ULONG_MAX == 4294967295u
# define li_32(h) 0x##h##ul
typedef unsigned long uint_32t;
# elif defined( _CRAY )
# error This code needs 32-bit data types, which Cray machines do not provide
# else
# error Please define uint_32t as a 32-bit unsigned integer type in brg_types.h
# endif
#endif
#ifndef BRG_UI64
# if defined( __BORLANDC__ ) && !defined( __MSDOS__ )
# define BRG_UI64
# define li_64(h) 0x##h##ui64
typedef unsigned __int64 uint_64t;
# elif defined( _MSC_VER ) && ( _MSC_VER < 1300 ) /* 1300 == VC++ 7.0 */
# define BRG_UI64
# define li_64(h) 0x##h##ui64
typedef unsigned __int64 uint_64t;
# elif defined( __sun ) && defined( ULONG_MAX ) && ULONG_MAX == 0xfffffffful
# define BRG_UI64
# define li_64(h) 0x##h##ull
typedef unsigned long long uint_64t;
# elif defined( __MVS__ )
# define BRG_UI64
# define li_64(h) 0x##h##ull
typedef unsigned int long long uint_64t;
# elif defined( UINT_MAX ) && UINT_MAX > 4294967295u
# if UINT_MAX == 18446744073709551615u
# define BRG_UI64
# define li_64(h) 0x##h##u
typedef unsigned int uint_64t;
# endif
# elif defined( ULONG_MAX ) && ULONG_MAX > 4294967295u
# if ULONG_MAX == 18446744073709551615ul
# define BRG_UI64
# define li_64(h) 0x##h##ul
typedef unsigned long uint_64t;
# endif
# elif defined( ULLONG_MAX ) && ULLONG_MAX > 4294967295u
# if ULLONG_MAX == 18446744073709551615ull
# define BRG_UI64
# define li_64(h) 0x##h##ull
typedef unsigned long long uint_64t;
# endif
# elif defined( ULONG_LONG_MAX ) && ULONG_LONG_MAX > 4294967295u
# if ULONG_LONG_MAX == 18446744073709551615ull
# define BRG_UI64
# define li_64(h) 0x##h##ull
typedef unsigned long long uint_64t;
# endif
# endif
#endif
#if !defined( BRG_UI64 )
# if defined( NEED_UINT_64T )
# error Please define uint_64t as an unsigned 64 bit type in brg_types.h
# endif
#endif
#ifndef RETURN_VALUES
# define RETURN_VALUES
# if defined( DLL_EXPORT )
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
# define VOID_RETURN __declspec( dllexport ) void __stdcall
# define INT_RETURN __declspec( dllexport ) int __stdcall
# elif defined( __GNUC__ )
# define VOID_RETURN __declspec( __dllexport__ ) void
# define INT_RETURN __declspec( __dllexport__ ) int
# else
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
# endif
# elif defined( DLL_IMPORT )
# if defined( _MSC_VER ) || defined ( __INTEL_COMPILER )
# define VOID_RETURN __declspec( dllimport ) void __stdcall
# define INT_RETURN __declspec( dllimport ) int __stdcall
# elif defined( __GNUC__ )
# define VOID_RETURN __declspec( __dllimport__ ) void
# define INT_RETURN __declspec( __dllimport__ ) int
# else
# error Use of the DLL is only available on the Microsoft, Intel and GCC compilers
# endif
# elif defined( __WATCOMC__ )
# define VOID_RETURN void __cdecl
# define INT_RETURN int __cdecl
# else
# define VOID_RETURN void
# define INT_RETURN int
# endif
#endif
/* These defines are used to detect and set the memory alignment of pointers.
Note that offsets are in bytes.
ALIGN_OFFSET(x,n) return the positive or zero offset of
the memory addressed by the pointer 'x'
from an address that is aligned on an
'n' byte boundary ('n' is a power of 2)
ALIGN_FLOOR(x,n) return a pointer that points to memory
that is aligned on an 'n' byte boundary
and is not higher than the memory address
pointed to by 'x' ('n' is a power of 2)
ALIGN_CEIL(x,n) return a pointer that points to memory
that is aligned on an 'n' byte boundary
and is not lower than the memory address
pointed to by 'x' ('n' is a power of 2)
*/
#define ALIGN_OFFSET(x,n) (((ptrint_t)(x)) & ((n) - 1))
#define ALIGN_FLOOR(x,n) ((uint_8t*)(x) - ( ((ptrint_t)(x)) & ((n) - 1)))
#define ALIGN_CEIL(x,n) ((uint_8t*)(x) + (-((ptrint_t)(x)) & ((n) - 1)))
/* These defines are used to declare buffers in a way that allows
faster operations on longer variables to be used. In all these
defines 'size' must be a power of 2 and >= 8. NOTE that the
buffer size is in bytes but the type length is in bits
UNIT_TYPEDEF(x,size) declares a variable 'x' of length
'size' bits
BUFR_TYPEDEF(x,size,bsize) declares a buffer 'x' of length 'bsize'
bytes defined as an array of variables
each of 'size' bits (bsize must be a
multiple of size / 8)
UNIT_CAST(x,size) casts a variable to a type of
length 'size' bits
UPTR_CAST(x,size) casts a pointer to a pointer to a
varaiable of length 'size' bits
*/
#define UI_TYPE(size) uint_##size##t
#define UNIT_TYPEDEF(x,size) typedef UI_TYPE(size) x
#define BUFR_TYPEDEF(x,size,bsize) typedef UI_TYPE(size) x[bsize / (size >> 3)]
#define UNIT_CAST(x,size) ((UI_TYPE(size) )(x))
#define UPTR_CAST(x,size) ((UI_TYPE(size)*)(x))
#if defined(__cplusplus)
}
#endif
#endif
#ifndef ZipCommon
#define ZipCommon
/* tm_unz contain date/time info */
typedef struct tm_unz_s
{
unsigned int tm_sec; /* seconds after the minute - [0,59] */
unsigned int tm_min; /* minutes after the hour - [0,59] */
unsigned int tm_hour; /* hours since midnight - [0,23] */
unsigned int tm_mday; /* day of the month - [1,31] */
unsigned int tm_mon; /* months since January - [0,11] */
unsigned int tm_year; /* years - [1980..2044] */
} tm_unz;
typedef struct unz_file_info_s
{
unsigned long version; /* version made by 2 bytes */
unsigned long version_needed; /* version needed to extract 2 bytes */
unsigned long flag; /* general purpose bit flag 2 bytes */
unsigned long compression_method; /* compression method 2 bytes */
unsigned long dosDate; /* last mod file date in Dos fmt 4 bytes */
unsigned long crc; /* crc-32 4 bytes */
unsigned long compressed_size; /* compressed size 4 bytes */
unsigned long uncompressed_size; /* uncompressed size 4 bytes */
unsigned long size_filename; /* filename length 2 bytes */
unsigned long size_file_extra; /* extra field length 2 bytes */
unsigned long size_file_comment; /* file comment length 2 bytes */
unsigned long disk_num_start; /* disk number start 2 bytes */
unsigned long internal_fa; /* internal file attributes 2 bytes */
unsigned long external_fa; /* external file attributes 4 bytes */
tm_unz tmu_date;
} unz_file_info;
/* unz_file_info contain information about a file in the zipfile */
typedef struct unz_file_info64_s
{
unsigned long version; /* version made by 2 bytes */
unsigned long version_needed; /* version needed to extract 2 bytes */
unsigned long flag; /* general purpose bit flag 2 bytes */
unsigned long compression_method; /* compression method 2 bytes */
unsigned long dosDate; /* last mod file date in Dos fmt 4 bytes */
unsigned long crc; /* crc-32 4 bytes */
unsigned long long compressed_size; /* compressed size 8 bytes */
unsigned long long uncompressed_size; /* uncompressed size 8 bytes */
unsigned long size_filename; /* filename length 2 bytes */
unsigned long size_file_extra; /* extra field length 2 bytes */
unsigned long size_file_comment; /* file comment length 2 bytes */
unsigned long disk_num_start; /* disk number start 2 bytes */
unsigned long internal_fa; /* internal file attributes 2 bytes */
unsigned long external_fa; /* external file attributes 4 bytes */
tm_unz tmu_date;
unsigned long long disk_offset;
unsigned long size_file_extra_internal;
} unz_file_info64;
typedef struct unz_global_info_s
{
unsigned long number_entry; /* total number of entries in
the central dir on this disk */
unsigned long number_disk_with_CD; /* number the the disk with central dir, used for spanning ZIP*/
unsigned long size_comment; /* size of the global comment of the zipfile */
} unz_global_info;
typedef struct unz_global_info64
{
unsigned long long number_entry; /* total number of entries in
the central dir on this disk */
unsigned long number_disk_with_CD; /* number the the disk with central dir, used for spanning ZIP*/
unsigned long size_comment; /* size of the global comment of the zipfile */
} unz_global_info64;
#endif
\ No newline at end of file
/* crypt.h -- base code for traditional PKWARE encryption
Version 1.01e, February 12th, 2005
Copyright (C) 1998-2005 Gilles Vollant
Modifications for Info-ZIP crypting
Copyright (C) 2003 Terry Thorsen
This code is a modified version of crypting code in Info-ZIP distribution
Copyright (C) 1990-2000 Info-ZIP. All rights reserved.
See the Info-ZIP LICENSE file version 2000-Apr-09 or later for terms of use
which also may be found at: ftp://ftp.info-zip.org/pub/infozip/license.html
The encryption/decryption parts of this source code (as opposed to the
non-echoing password parts) were originally written in Europe. The
whole source package can be freely distributed, including from the USA.
(Prior to January 2000, re-export from the US was a violation of US law.)
This encryption code is a direct transcription of the algorithm from
Roger Schlafly, described by Phil Katz in the file appnote.txt. This
file (appnote.txt) is distributed with the PKZIP program (even in the
version without encryption capabilities).
If you don't need crypting in your application, just define symbols
NOCRYPT and NOUNCRYPT.
*/
#define CRC32(c, b) ((*(pcrc_32_tab+(((int)(c) ^ (b)) & 0xff))) ^ ((c) >> 8))
/***********************************************************************
* Return the next byte in the pseudo-random sequence
*/
static int decrypt_byte(unsigned long* pkeys, const unsigned long* pcrc_32_tab)
{
unsigned temp; /* POTENTIAL BUG: temp*(temp^1) may overflow in an
* unpredictable manner on 16-bit systems; not a problem
* with any known compiler so far, though */
temp = ((unsigned)(*(pkeys+2)) & 0xffff) | 2;
return (int)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
/***********************************************************************
* Update the encryption keys with the next byte of plain text
*/
static int update_keys(unsigned long* pkeys,const unsigned long* pcrc_32_tab,int c)
{
(*(pkeys+0)) = CRC32((*(pkeys+0)), c);
(*(pkeys+1)) += (*(pkeys+0)) & 0xff;
(*(pkeys+1)) = (*(pkeys+1)) * 134775813L + 1;
{
register int keyshift = (int)((*(pkeys+1)) >> 24);
(*(pkeys+2)) = CRC32((*(pkeys+2)), keyshift);
}
return c;
}
/***********************************************************************
* Initialize the encryption keys and the random header according to
* the given password.
*/
static void init_keys(const char* passwd,unsigned long* pkeys,const unsigned long* pcrc_32_tab)
{
*(pkeys+0) = 305419896L;
*(pkeys+1) = 591751049L;
*(pkeys+2) = 878082192L;
while (*passwd != 0) {
update_keys(pkeys,pcrc_32_tab,(int)*passwd);
passwd++;
}
}
#define zdecode(pkeys,pcrc_32_tab,c) \
(update_keys(pkeys,pcrc_32_tab,c ^= decrypt_byte(pkeys,pcrc_32_tab)))
#define zencode(pkeys,pcrc_32_tab,c,t) \
(t=decrypt_byte(pkeys,pcrc_32_tab), update_keys(pkeys,pcrc_32_tab,c), t^(c))
#ifdef INCLUDECRYPTINGCODE_IFCRYPTALLOWED
#define RAND_HEAD_LEN 12
/* "last resort" source for second part of crypt seed pattern */
# ifndef ZCR_SEED2
# define ZCR_SEED2 3141592654UL /* use PI as default pattern */
# endif
static int crypthead(const char* passwd, /* password string */
unsigned char* buf, /* where to write header */
int bufSize,
unsigned long* pkeys,
const unsigned long* pcrc_32_tab,
unsigned long crcForCrypting)
{
int n; /* index in random header */
int t; /* temporary */
int c; /* random byte */
unsigned char header[RAND_HEAD_LEN-2]; /* random header */
static unsigned calls = 0; /* ensure different random header each time */
if (bufSize<RAND_HEAD_LEN)
return 0;
/* First generate RAND_HEAD_LEN-2 random bytes. We encrypt the
* output of rand() to get less predictability, since rand() is
* often poorly implemented.
*/
if (++calls == 1)
{
srand((unsigned)(time(NULL) ^ ZCR_SEED2));
}
init_keys(passwd, pkeys, pcrc_32_tab);
for (n = 0; n < RAND_HEAD_LEN-2; n++)
{
c = (rand() >> 7) & 0xff;
header[n] = (unsigned char)zencode(pkeys, pcrc_32_tab, c, t);
}
/* Encrypt random header (last two bytes is high word of crc) */
init_keys(passwd, pkeys, pcrc_32_tab);
for (n = 0; n < RAND_HEAD_LEN-2; n++)
{
buf[n] = (unsigned char)zencode(pkeys, pcrc_32_tab, header[n], t);
}
buf[n++] = (unsigned char)zencode(pkeys, pcrc_32_tab, (int)(crcForCrypting >> 16) & 0xff, t);
buf[n++] = (unsigned char)zencode(pkeys, pcrc_32_tab, (int)(crcForCrypting >> 24) & 0xff, t);
return n;
}
#endif
#ifdef _WIN32
#include <windows.h>
#else
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#if defined(__cplusplus)
extern "C"
{
#endif
#ifdef _WIN32
int entropy_fun(unsigned char buf[], unsigned int len)
{
HCRYPTPROV provider;
unsigned __int64 pentium_tsc[1];
unsigned int i;
int result = 0;
if (CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
{
result = CryptGenRandom(provider, len, buf);
CryptReleaseContext(provider, 0);
if (result)
return len;
}
QueryPerformanceCounter((LARGE_INTEGER *)pentium_tsc);
for(i = 0; i < 8 && i < len; ++i)
buf[i] = ((unsigned char*)pentium_tsc)[i];
return i;
}
#else
int entropy_fun(unsigned char buf[], unsigned int len)
{
int frand = open("/dev/random", O_RDONLY);
int rlen = 0;
if (frand != -1)
{
rlen = (int)read(frand, buf, len);
close(frand);
}
return rlen;
}
#endif
#if defined(__cplusplus)
}
#endif
#ifndef _ENTROPY_FUN_H
#define _ENTROPY_FUN_H
#if defined(__cplusplus)
extern "C"
{
#endif
int entropy_fun(unsigned char buf[], unsigned int len);
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
-------------------------------------------------------------------------
Issue Date: 24/01/2003
This file implements password based file encryption and authentication
using AES in CTR mode, HMAC-SHA1 authentication and RFC2898 password
based key derivation.
*/
#include <memory.h>
#include "fileenc.h"
#if defined(__cplusplus)
extern "C"
{
#endif
/* subroutine for data encryption/decryption */
/* this could be speeded up a lot by aligning */
/* buffers and using 32 bit operations */
static void encr_data(unsigned char data[], unsigned long d_len, fcrypt_ctx cx[1])
{
unsigned long i = 0, pos = cx->encr_pos;
while (i < d_len) {
if (pos == AES_BLOCK_SIZE) {
unsigned int j = 0;
/* increment encryption nonce */
while (j < 8 && !++cx->nonce[j])
++j;
/* encrypt the nonce to form next xor buffer */
aes_encrypt(cx->nonce, cx->encr_bfr, cx->encr_ctx);
pos = 0;
}
data[i++] ^= cx->encr_bfr[pos++];
}
cx->encr_pos = (unsigned int)pos;
}
int fcrypt_init(
int mode, /* the mode to be used (input) */
const unsigned char pwd[], /* the user specified password (input) */
unsigned int pwd_len, /* the length of the password (input) */
const unsigned char salt[], /* the salt (input) */
#ifdef PASSWORD_VERIFIER
unsigned char pwd_ver[PWD_VER_LENGTH], /* 2 byte password verifier (output) */
#endif
fcrypt_ctx cx[1]) /* the file encryption context (output) */
{
unsigned char kbuf[2 * MAX_KEY_LENGTH + PWD_VER_LENGTH];
if (pwd_len > MAX_PWD_LENGTH)
return PASSWORD_TOO_LONG;
if (mode < 1 || mode > 3)
return BAD_MODE;
cx->mode = mode;
cx->pwd_len = pwd_len;
/* derive the encryption and authentication keys and the password verifier */
derive_key(pwd, pwd_len, salt, SALT_LENGTH(mode), KEYING_ITERATIONS,
kbuf, 2 * KEY_LENGTH(mode) + PWD_VER_LENGTH);
/* initialise the encryption nonce and buffer pos */
cx->encr_pos = AES_BLOCK_SIZE;
/* if we need a random component in the encryption */
/* nonce, this is where it would have to be set */
memset(cx->nonce, 0, AES_BLOCK_SIZE * sizeof(unsigned char));
/* initialise for encryption using key 1 */
aes_encrypt_key(kbuf, KEY_LENGTH(mode), cx->encr_ctx);
/* initialise for authentication using key 2 */
hmac_sha_begin(cx->auth_ctx);
hmac_sha_key(kbuf + KEY_LENGTH(mode), KEY_LENGTH(mode), cx->auth_ctx);
#ifdef PASSWORD_VERIFIER
memcpy(pwd_ver, kbuf + 2 * KEY_LENGTH(mode), PWD_VER_LENGTH);
#endif
return GOOD_RETURN;
}
/* perform 'in place' encryption and authentication */
void fcrypt_encrypt(unsigned char data[], unsigned int data_len, fcrypt_ctx cx[1])
{
encr_data(data, data_len, cx);
hmac_sha_data(data, data_len, cx->auth_ctx);
}
/* perform 'in place' authentication and decryption */
void fcrypt_decrypt(unsigned char data[], unsigned int data_len, fcrypt_ctx cx[1])
{
hmac_sha_data(data, data_len, cx->auth_ctx);
encr_data(data, data_len, cx);
}
/* close encryption/decryption and return the MAC value */
int fcrypt_end(unsigned char mac[], fcrypt_ctx cx[1])
{
hmac_sha_end(mac, MAC_LENGTH(cx->mode), cx->auth_ctx);
return MAC_LENGTH(cx->mode); /* return MAC length in bytes */
}
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 24/01/2003
This file contains the header file for fileenc.c, which implements password
based file encryption and authentication using AES in CTR mode, HMAC-SHA1
authentication and RFC2898 password based key derivation.
*/
#ifndef _FENC_H
#define _FENC_H
#include "aes.h"
#include "hmac.h"
#include "pwd2key.h"
#define PASSWORD_VERIFIER
#define MAX_KEY_LENGTH 32
#define MAX_PWD_LENGTH 128
#define MAX_SALT_LENGTH 16
#define KEYING_ITERATIONS 1000
#ifdef PASSWORD_VERIFIER
#define PWD_VER_LENGTH 2
#else
#define PWD_VER_LENGTH 0
#endif
#define GOOD_RETURN 0
#define PASSWORD_TOO_LONG -100
#define BAD_MODE -101
/*
Field lengths (in bytes) versus File Encryption Mode (0 < mode < 4)
Mode Key Salt MAC Overhead
1 16 8 10 18
2 24 12 10 22
3 32 16 10 26
The following macros assume that the mode value is correct.
*/
#define KEY_LENGTH(mode) (8 * (mode & 3) + 8)
#define SALT_LENGTH(mode) (4 * (mode & 3) + 4)
#define MAC_LENGTH(mode) (10)
/* the context for file encryption */
#if defined(__cplusplus)
extern "C"
{
#endif
typedef struct
{ unsigned char nonce[AES_BLOCK_SIZE]; /* the CTR nonce */
unsigned char encr_bfr[AES_BLOCK_SIZE]; /* encrypt buffer */
aes_encrypt_ctx encr_ctx[1]; /* encryption context */
hmac_ctx auth_ctx[1]; /* authentication context */
unsigned int encr_pos; /* block position (enc) */
unsigned int pwd_len; /* password length */
unsigned int mode; /* File encryption mode */
} fcrypt_ctx;
/* initialise file encryption or decryption */
int fcrypt_init(
int mode, /* the mode to be used (input) */
const unsigned char pwd[], /* the user specified password (input) */
unsigned int pwd_len, /* the length of the password (input) */
const unsigned char salt[], /* the salt (input) */
#ifdef PASSWORD_VERIFIER
unsigned char pwd_ver[PWD_VER_LENGTH], /* 2 byte password verifier (output) */
#endif
fcrypt_ctx cx[1]); /* the file encryption context (output) */
/* perform 'in place' encryption or decryption and authentication */
void fcrypt_encrypt(unsigned char data[], unsigned int data_len, fcrypt_ctx cx[1]);
void fcrypt_decrypt(unsigned char data[], unsigned int data_len, fcrypt_ctx cx[1]);
/* close encryption/decryption and return the MAC value */
/* the return value is the length of the MAC */
int fcrypt_end(unsigned char mac[], /* the MAC value (output) */
fcrypt_ctx cx[1]); /* the context (input) */
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 26/08/2003
This is an implementation of HMAC, the FIPS standard keyed hash function
*/
#include "hmac.h"
#include "brg_types.h"
#if defined(__cplusplus)
extern "C"
{
#endif
/* initialise the HMAC context to zero */
void hmac_sha_begin(hmac_ctx cx[1])
{
memset(cx, 0, sizeof(hmac_ctx));
}
/* input the HMAC key (can be called multiple times) */
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1])
{
if(cx->klen == HMAC_IN_DATA) /* error if further key input */
return HMAC_BAD_MODE; /* is attempted in data mode */
if(cx->klen + key_len > HASH_INPUT_SIZE) /* if the key has to be hashed */
{
if(cx->klen <= HASH_INPUT_SIZE) /* if the hash has not yet been */
{ /* started, initialise it and */
sha_begin(cx->ctx); /* hash stored key characters */
sha_hash(cx->key, cx->klen, cx->ctx);
}
sha_hash(key, key_len, cx->ctx); /* hash long key data into hash */
}
else /* otherwise store key data */
memcpy(cx->key + cx->klen, key, key_len);
cx->klen += key_len; /* update the key length count */
return HMAC_OK;
}
/* input the HMAC data (can be called multiple times) - */
/* note that this call terminates the key input phase */
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1])
{ unsigned int i;
if(cx->klen != HMAC_IN_DATA) /* if not yet in data phase */
{
if(cx->klen > HASH_INPUT_SIZE) /* if key is being hashed */
{ /* complete the hash and */
sha_end(cx->key, cx->ctx); /* store the result as the */
cx->klen = HASH_OUTPUT_SIZE; /* key and set new length */
}
/* pad the key if necessary */
memset(cx->key + cx->klen, 0, HASH_INPUT_SIZE - cx->klen);
/* xor ipad into key value */
for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i)
((uint_32t*)cx->key)[i] ^= 0x36363636;
/* and start hash operation */
sha_begin(cx->ctx);
sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);
/* mark as now in data mode */
cx->klen = HMAC_IN_DATA;
}
/* hash the data (if any) */
if(data_len)
sha_hash(data, data_len, cx->ctx);
}
/* compute and output the MAC value */
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1])
{ unsigned char dig[HASH_OUTPUT_SIZE];
unsigned int i;
/* if no data has been entered perform a null data phase */
if(cx->klen != HMAC_IN_DATA)
hmac_sha_data((const unsigned char*)0, 0, cx);
sha_end(dig, cx->ctx); /* complete the inner hash */
/* set outer key value using opad and removing ipad */
for(i = 0; i < (HASH_INPUT_SIZE >> 2); ++i)
((uint_32t*)cx->key)[i] ^= 0x36363636 ^ 0x5c5c5c5c;
/* perform the outer hash operation */
sha_begin(cx->ctx);
sha_hash(cx->key, HASH_INPUT_SIZE, cx->ctx);
sha_hash(dig, HASH_OUTPUT_SIZE, cx->ctx);
sha_end(dig, cx->ctx);
/* output the hash value */
for(i = 0; i < mac_len; ++i)
mac[i] = dig[i];
}
/* 'do it all in one go' subroutine */
void hmac_sha(const unsigned char key[], unsigned long key_len,
const unsigned char data[], unsigned long data_len,
unsigned char mac[], unsigned long mac_len)
{ hmac_ctx cx[1];
hmac_sha_begin(cx);
hmac_sha_key(key, key_len, cx);
hmac_sha_data(data, data_len, cx);
hmac_sha_end(mac, mac_len, cx);
}
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 26/08/2003
This is an implementation of HMAC, the FIPS standard keyed hash function
*/
#ifndef _HMAC_H
#define _HMAC_H
#include <memory.h>
#if defined(__cplusplus)
extern "C"
{
#endif
#define USE_SHA1
#if !defined(USE_SHA1) && !defined(USE_SHA256)
#error define USE_SHA1 or USE_SHA256 to set the HMAC hash algorithm
#endif
#ifdef USE_SHA1
#include "sha1.h"
#define HASH_INPUT_SIZE SHA1_BLOCK_SIZE
#define HASH_OUTPUT_SIZE SHA1_DIGEST_SIZE
#define sha_ctx sha1_ctx
#define sha_begin sha1_begin
#define sha_hash sha1_hash
#define sha_end sha1_end
#endif
#ifdef USE_SHA256
#include "sha2.h"
#define HASH_INPUT_SIZE SHA256_BLOCK_SIZE
#define HASH_OUTPUT_SIZE SHA256_DIGEST_SIZE
#define sha_ctx sha256_ctx
#define sha_begin sha256_begin
#define sha_hash sha256_hash
#define sha_end sha256_end
#endif
#define HMAC_OK 0
#define HMAC_BAD_MODE -1
#define HMAC_IN_DATA 0xffffffff
typedef struct
{ unsigned char key[HASH_INPUT_SIZE];
sha_ctx ctx[1];
unsigned long klen;
} hmac_ctx;
void hmac_sha_begin(hmac_ctx cx[1]);
int hmac_sha_key(const unsigned char key[], unsigned long key_len, hmac_ctx cx[1]);
void hmac_sha_data(const unsigned char data[], unsigned long data_len, hmac_ctx cx[1]);
void hmac_sha_end(unsigned char mac[], unsigned long mac_len, hmac_ctx cx[1]);
void hmac_sha(const unsigned char key[], unsigned long key_len,
const unsigned char data[], unsigned long data_len,
unsigned char mac[], unsigned long mac_len);
#if defined(__cplusplus)
}
#endif
#endif
#include <sys/stat.h>
#import "zlib.h"
#import "zconf.h"
#include "crypt.h"
#include "ioapi.h"
#include "mztools.h"
#include "unzip.h"
#include "zip.h"
#include "common.h"
#include "aes_via_ace.h"
#include "aes.h"
#include "aesopt.h"
#include "aestab.h"
#include "brg_endian.h"
#include "brg_types.h"
#include "entropy.h"
#include "fileenc.h"
#include "hmac.h"
#include "prng.h"
#include "pwd2key.h"
#include "sha1.h"
/* ioapi.h -- IO base function header for compress/uncompress .zip
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications for Zip64 support
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#include <stdlib.h>
#include <string.h>
#include "ioapi.h"
#if defined(_WIN32)
# define snprintf _snprintf
#endif
#ifdef __APPLE__
/* In darwin and perhaps other BSD variants off_t is a 64 bit value, hence no need for specific 64 bit functions */
# define FOPEN_FUNC(filename, mode) fopen(filename, mode)
# define FTELLO_FUNC(stream) ftello(stream)
# define FSEEKO_FUNC(stream, offset, origin) fseeko(stream, offset, origin)
#else
# define FOPEN_FUNC(filename, mode) fopen64(filename, mode)
# define FTELLO_FUNC(stream) ftello64(stream)
# define FSEEKO_FUNC(stream, offset, origin) fseeko64(stream, offset, origin)
#endif
/* I've found an old Unix (a SunOS 4.1.3_U1) without all SEEK_* defined.... */
#ifndef SEEK_CUR
# define SEEK_CUR 1
#endif
#ifndef SEEK_END
# define SEEK_END 2
#endif
#ifndef SEEK_SET
# define SEEK_SET 0
#endif
voidpf call_zopen64 (const zlib_filefunc64_32_def* pfilefunc,const void*filename,int mode)
{
if (pfilefunc->zfile_func64.zopen64_file != NULL)
return (*(pfilefunc->zfile_func64.zopen64_file)) (pfilefunc->zfile_func64.opaque,filename,mode);
return (*(pfilefunc->zopen32_file))(pfilefunc->zfile_func64.opaque,(const char*)filename,mode);
}
voidpf call_zopendisk64 OF((const zlib_filefunc64_32_def* pfilefunc, voidpf filestream, int number_disk, int mode))
{
if (pfilefunc->zfile_func64.zopendisk64_file != NULL)
return (*(pfilefunc->zfile_func64.zopendisk64_file)) (pfilefunc->zfile_func64.opaque,filestream,number_disk,mode);
return (*(pfilefunc->zopendisk32_file))(pfilefunc->zfile_func64.opaque,filestream,number_disk,mode);
}
long call_zseek64 (const zlib_filefunc64_32_def* pfilefunc,voidpf filestream, ZPOS64_T offset, int origin)
{
uLong offsetTruncated;
if (pfilefunc->zfile_func64.zseek64_file != NULL)
return (*(pfilefunc->zfile_func64.zseek64_file)) (pfilefunc->zfile_func64.opaque,filestream,offset,origin);
offsetTruncated = (uLong)offset;
if (offsetTruncated != offset)
return -1;
return (*(pfilefunc->zseek32_file))(pfilefunc->zfile_func64.opaque,filestream,offsetTruncated,origin);
}
ZPOS64_T call_ztell64 (const zlib_filefunc64_32_def* pfilefunc,voidpf filestream)
{
uLong tell_uLong;
if (pfilefunc->zfile_func64.zseek64_file != NULL)
return (*(pfilefunc->zfile_func64.ztell64_file)) (pfilefunc->zfile_func64.opaque,filestream);
tell_uLong = (*(pfilefunc->ztell32_file))(pfilefunc->zfile_func64.opaque,filestream);
if ((tell_uLong) == 0xffffffff)
return (ZPOS64_T)-1;
return tell_uLong;
}
void fill_zlib_filefunc64_32_def_from_filefunc32(zlib_filefunc64_32_def* p_filefunc64_32,const zlib_filefunc_def* p_filefunc32)
{
p_filefunc64_32->zfile_func64.zopen64_file = NULL;
p_filefunc64_32->zfile_func64.zopendisk64_file = NULL;
p_filefunc64_32->zopen32_file = p_filefunc32->zopen_file;
p_filefunc64_32->zopendisk32_file = p_filefunc32->zopendisk_file;
p_filefunc64_32->zfile_func64.zerror_file = p_filefunc32->zerror_file;
p_filefunc64_32->zfile_func64.zread_file = p_filefunc32->zread_file;
p_filefunc64_32->zfile_func64.zwrite_file = p_filefunc32->zwrite_file;
p_filefunc64_32->zfile_func64.ztell64_file = NULL;
p_filefunc64_32->zfile_func64.zseek64_file = NULL;
p_filefunc64_32->zfile_func64.zclose_file = p_filefunc32->zclose_file;
p_filefunc64_32->zfile_func64.zerror_file = p_filefunc32->zerror_file;
p_filefunc64_32->zfile_func64.opaque = p_filefunc32->opaque;
p_filefunc64_32->zseek32_file = p_filefunc32->zseek_file;
p_filefunc64_32->ztell32_file = p_filefunc32->ztell_file;
}
static voidpf ZCALLBACK fopen_file_func OF((voidpf opaque, const char* filename, int mode));
static uLong ZCALLBACK fread_file_func OF((voidpf opaque, voidpf stream, void* buf, uLong size));
static uLong ZCALLBACK fwrite_file_func OF((voidpf opaque, voidpf stream, const void* buf,uLong size));
static ZPOS64_T ZCALLBACK ftell64_file_func OF((voidpf opaque, voidpf stream));
static long ZCALLBACK fseek64_file_func OF((voidpf opaque, voidpf stream, ZPOS64_T offset, int origin));
static int ZCALLBACK fclose_file_func OF((voidpf opaque, voidpf stream));
static int ZCALLBACK ferror_file_func OF((voidpf opaque, voidpf stream));
typedef struct
{
FILE *file;
int filenameLength;
void *filename;
} FILE_IOPOSIX;
static voidpf file_build_ioposix(FILE *file, const char *filename)
{
FILE_IOPOSIX *ioposix = NULL;
if (file == NULL)
return NULL;
ioposix = (FILE_IOPOSIX*)malloc(sizeof(FILE_IOPOSIX));
ioposix->file = file;
ioposix->filenameLength = (int)strlen(filename) + 1;
ioposix->filename = (char*)malloc(ioposix->filenameLength * sizeof(char));
strncpy(ioposix->filename, filename, ioposix->filenameLength);
return (voidpf)ioposix;
}
static voidpf ZCALLBACK fopen_file_func (voidpf opaque, const char* filename, int mode)
{
FILE* file = NULL;
const char* mode_fopen = NULL;
if ((mode & ZLIB_FILEFUNC_MODE_READWRITEFILTER) == ZLIB_FILEFUNC_MODE_READ)
mode_fopen = "rb";
else if (mode & ZLIB_FILEFUNC_MODE_EXISTING)
mode_fopen = "r+b";
else if (mode & ZLIB_FILEFUNC_MODE_CREATE)
mode_fopen = "wb";
if ((filename != NULL) && (mode_fopen != NULL))
{
file = fopen(filename, mode_fopen);
return file_build_ioposix(file, filename);
}
return file;
}
static voidpf ZCALLBACK fopen64_file_func (voidpf opaque, const void* filename, int mode)
{
FILE* file = NULL;
const char* mode_fopen = NULL;
if ((mode & ZLIB_FILEFUNC_MODE_READWRITEFILTER) == ZLIB_FILEFUNC_MODE_READ)
mode_fopen = "rb";
else if (mode & ZLIB_FILEFUNC_MODE_EXISTING)
mode_fopen = "r+b";
else if (mode & ZLIB_FILEFUNC_MODE_CREATE)
mode_fopen = "wb";
if ((filename != NULL) && (mode_fopen != NULL))
{
file = FOPEN_FUNC((const char*)filename, mode_fopen);
return file_build_ioposix(file, (const char*)filename);
}
return file;
}
static voidpf ZCALLBACK fopendisk64_file_func (voidpf opaque, voidpf stream, int number_disk, int mode)
{
FILE_IOPOSIX *ioposix = NULL;
char *diskFilename = NULL;
voidpf ret = NULL;
int i = 0;
if (stream == NULL)
return NULL;
ioposix = (FILE_IOPOSIX*)stream;
diskFilename = (char*)malloc(ioposix->filenameLength * sizeof(char));
strncpy(diskFilename, ioposix->filename, ioposix->filenameLength);
for (i = ioposix->filenameLength - 1; i >= 0; i -= 1)
{
if (diskFilename[i] != '.')
continue;
snprintf(&diskFilename[i], ioposix->filenameLength - i, ".z%02d", number_disk + 1);
break;
}
if (i >= 0)
ret = fopen64_file_func(opaque, diskFilename, mode);
free(diskFilename);
return ret;
}
static voidpf ZCALLBACK fopendisk_file_func (voidpf opaque, voidpf stream, int number_disk, int mode)
{
FILE_IOPOSIX *ioposix = NULL;
char *diskFilename = NULL;
voidpf ret = NULL;
int i = 0;
if (stream == NULL)
return NULL;
ioposix = (FILE_IOPOSIX*)stream;
diskFilename = (char*)malloc(ioposix->filenameLength * sizeof(char));
strncpy(diskFilename, ioposix->filename, ioposix->filenameLength);
for (i = ioposix->filenameLength - 1; i >= 0; i -= 1)
{
if (diskFilename[i] != '.')
continue;
snprintf(&diskFilename[i], ioposix->filenameLength - i, ".z%02d", number_disk + 1);
break;
}
if (i >= 0)
ret = fopen_file_func(opaque, diskFilename, mode);
free(diskFilename);
return ret;
}
static uLong ZCALLBACK fread_file_func (voidpf opaque, voidpf stream, void* buf, uLong size)
{
FILE_IOPOSIX *ioposix = NULL;
uLong ret;
if (stream == NULL)
return -1;
ioposix = (FILE_IOPOSIX*)stream;
ret = (uLong)fread(buf, 1, (size_t)size, ioposix->file);
return ret;
}
static uLong ZCALLBACK fwrite_file_func (voidpf opaque, voidpf stream, const void* buf, uLong size)
{
FILE_IOPOSIX *ioposix = NULL;
uLong ret;
if (stream == NULL)
return -1;
ioposix = (FILE_IOPOSIX*)stream;
ret = (uLong)fwrite(buf, 1, (size_t)size, ioposix->file);
return ret;
}
static long ZCALLBACK ftell_file_func (voidpf opaque, voidpf stream)
{
FILE_IOPOSIX *ioposix = NULL;
long ret = -1;
if (stream == NULL)
return ret;
ioposix = (FILE_IOPOSIX*)stream;
ret = ftell(ioposix->file);
return ret;
}
static ZPOS64_T ZCALLBACK ftell64_file_func (voidpf opaque, voidpf stream)
{
FILE_IOPOSIX *ioposix = NULL;
ZPOS64_T ret = -1;
if (stream == NULL)
return ret;
ioposix = (FILE_IOPOSIX*)stream;
ret = FTELLO_FUNC(ioposix->file);
return ret;
}
static long ZCALLBACK fseek_file_func (voidpf opaque, voidpf stream, uLong offset, int origin)
{
FILE_IOPOSIX *ioposix = NULL;
int fseek_origin = 0;
long ret = 0;
if (stream == NULL)
return -1;
ioposix = (FILE_IOPOSIX*)stream;
switch (origin)
{
case ZLIB_FILEFUNC_SEEK_CUR:
fseek_origin = SEEK_CUR;
break;
case ZLIB_FILEFUNC_SEEK_END:
fseek_origin = SEEK_END;
break;
case ZLIB_FILEFUNC_SEEK_SET:
fseek_origin = SEEK_SET;
break;
default:
return -1;
}
if (fseek(ioposix->file, offset, fseek_origin) != 0)
ret = -1;
return ret;
}
static long ZCALLBACK fseek64_file_func (voidpf opaque, voidpf stream, ZPOS64_T offset, int origin)
{
FILE_IOPOSIX *ioposix = NULL;
int fseek_origin = 0;
long ret = 0;
if (stream == NULL)
return -1;
ioposix = (FILE_IOPOSIX*)stream;
switch (origin)
{
case ZLIB_FILEFUNC_SEEK_CUR:
fseek_origin = SEEK_CUR;
break;
case ZLIB_FILEFUNC_SEEK_END:
fseek_origin = SEEK_END;
break;
case ZLIB_FILEFUNC_SEEK_SET:
fseek_origin = SEEK_SET;
break;
default:
return -1;
}
if(FSEEKO_FUNC(ioposix->file, offset, fseek_origin) != 0)
ret = -1;
return ret;
}
static int ZCALLBACK fclose_file_func (voidpf opaque, voidpf stream)
{
FILE_IOPOSIX *ioposix = NULL;
int ret = -1;
if (stream == NULL)
return ret;
ioposix = (FILE_IOPOSIX*)stream;
if (ioposix->filename != NULL)
free(ioposix->filename);
ret = fclose(ioposix->file);
free(ioposix);
return ret;
}
static int ZCALLBACK ferror_file_func (voidpf opaque, voidpf stream)
{
FILE_IOPOSIX *ioposix = NULL;
int ret = -1;
if (stream == NULL)
return ret;
ioposix = (FILE_IOPOSIX*)stream;
ret = ferror(ioposix->file);
return ret;
}
void fill_fopen_filefunc (zlib_filefunc_def* pzlib_filefunc_def)
{
pzlib_filefunc_def->zopen_file = fopen_file_func;
pzlib_filefunc_def->zopendisk_file = fopendisk_file_func;
pzlib_filefunc_def->zread_file = fread_file_func;
pzlib_filefunc_def->zwrite_file = fwrite_file_func;
pzlib_filefunc_def->ztell_file = ftell_file_func;
pzlib_filefunc_def->zseek_file = fseek_file_func;
pzlib_filefunc_def->zclose_file = fclose_file_func;
pzlib_filefunc_def->zerror_file = ferror_file_func;
pzlib_filefunc_def->opaque = NULL;
}
void fill_fopen64_filefunc (zlib_filefunc64_def* pzlib_filefunc_def)
{
pzlib_filefunc_def->zopen64_file = fopen64_file_func;
pzlib_filefunc_def->zopendisk64_file = fopendisk64_file_func;
pzlib_filefunc_def->zread_file = fread_file_func;
pzlib_filefunc_def->zwrite_file = fwrite_file_func;
pzlib_filefunc_def->ztell64_file = ftell64_file_func;
pzlib_filefunc_def->zseek64_file = fseek64_file_func;
pzlib_filefunc_def->zclose_file = fclose_file_func;
pzlib_filefunc_def->zerror_file = ferror_file_func;
pzlib_filefunc_def->opaque = NULL;
}
/* ioapi.h -- IO base function header for compress/uncompress .zip
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications for Zip64 support
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#ifndef _ZLIBIOAPI64_H
#define _ZLIBIOAPI64_H
#if (!defined(_WIN32)) && (!defined(WIN32)) && (!defined(__APPLE__))
# ifndef __USE_FILE_OFFSET64
# define __USE_FILE_OFFSET64
# endif
# ifndef __USE_LARGEFILE64
# define __USE_LARGEFILE64
# endif
# ifndef _LARGEFILE64_SOURCE
# define _LARGEFILE64_SOURCE
# endif
# ifndef _FILE_OFFSET_BIT
# define _FILE_OFFSET_BIT 64
# endif
#endif
#include <stdio.h>
#include <stdlib.h>
#include "zlib.h"
#if defined(USE_FILE32API)
# define fopen64 fopen
# define ftello64 ftell
# define fseeko64 fseek
#else
# if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || defined(__OpenBSD__)
# define fopen64 fopen
# define ftello64 ftello
# define fseeko64 fseeko
# endif
# ifdef _MSC_VER
# define fopen64 fopen
# if (_MSC_VER >= 1400) && (!(defined(NO_MSCVER_FILE64_FUNC)))
# define ftello64 _ftelli64
# define fseeko64 _fseeki64
# else /* old MSC */
# define ftello64 ftell
# define fseeko64 fseek
# endif
# endif
#endif
/* a type choosen by DEFINE */
#ifdef HAVE_64BIT_INT_CUSTOM
typedef 64BIT_INT_CUSTOM_TYPE ZPOS64_T;
#else
# ifdef HAS_STDINT_H
# include "stdint.h"
typedef uint64_t ZPOS64_T;
# else
# if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 ZPOS64_T;
# else
typedef unsigned long long int ZPOS64_T;
# endif
# endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define ZLIB_FILEFUNC_SEEK_CUR (1)
#define ZLIB_FILEFUNC_SEEK_END (2)
#define ZLIB_FILEFUNC_SEEK_SET (0)
#define ZLIB_FILEFUNC_MODE_READ (1)
#define ZLIB_FILEFUNC_MODE_WRITE (2)
#define ZLIB_FILEFUNC_MODE_READWRITEFILTER (3)
#define ZLIB_FILEFUNC_MODE_EXISTING (4)
#define ZLIB_FILEFUNC_MODE_CREATE (8)
#ifndef ZCALLBACK
# if (defined(WIN32) || defined(_WIN32) || defined (WINDOWS) || \
defined (_WINDOWS)) && defined(CALLBACK) && defined (USEWINDOWS_CALLBACK)
# define ZCALLBACK CALLBACK
# else
# define ZCALLBACK
# endif
#endif
typedef voidpf (ZCALLBACK *open_file_func) OF((voidpf opaque, const char* filename, int mode));
typedef voidpf (ZCALLBACK *opendisk_file_func) OF((voidpf opaque, voidpf stream, int number_disk, int mode));
typedef uLong (ZCALLBACK *read_file_func) OF((voidpf opaque, voidpf stream, void* buf, uLong size));
typedef uLong (ZCALLBACK *write_file_func) OF((voidpf opaque, voidpf stream, const void* buf, uLong size));
typedef int (ZCALLBACK *close_file_func) OF((voidpf opaque, voidpf stream));
typedef int (ZCALLBACK *testerror_file_func) OF((voidpf opaque, voidpf stream));
typedef long (ZCALLBACK *tell_file_func) OF((voidpf opaque, voidpf stream));
typedef long (ZCALLBACK *seek_file_func) OF((voidpf opaque, voidpf stream, uLong offset, int origin));
/* here is the "old" 32 bits structure structure */
typedef struct zlib_filefunc_def_s
{
open_file_func zopen_file;
opendisk_file_func zopendisk_file;
read_file_func zread_file;
write_file_func zwrite_file;
tell_file_func ztell_file;
seek_file_func zseek_file;
close_file_func zclose_file;
testerror_file_func zerror_file;
voidpf opaque;
} zlib_filefunc_def;
typedef ZPOS64_T (ZCALLBACK *tell64_file_func) OF((voidpf opaque, voidpf stream));
typedef long (ZCALLBACK *seek64_file_func) OF((voidpf opaque, voidpf stream, ZPOS64_T offset, int origin));
typedef voidpf (ZCALLBACK *open64_file_func) OF((voidpf opaque, const void* filename, int mode));
typedef voidpf (ZCALLBACK *opendisk64_file_func)OF((voidpf opaque, voidpf stream, int number_disk, int mode));
typedef struct zlib_filefunc64_def_s
{
open64_file_func zopen64_file;
opendisk64_file_func zopendisk64_file;
read_file_func zread_file;
write_file_func zwrite_file;
tell64_file_func ztell64_file;
seek64_file_func zseek64_file;
close_file_func zclose_file;
testerror_file_func zerror_file;
voidpf opaque;
} zlib_filefunc64_def;
void fill_fopen_filefunc OF((zlib_filefunc_def* pzlib_filefunc_def));
void fill_fopen64_filefunc OF((zlib_filefunc64_def* pzlib_filefunc_def));
/* now internal definition, only for zip.c and unzip.h */
typedef struct zlib_filefunc64_32_def_s
{
zlib_filefunc64_def zfile_func64;
open_file_func zopen32_file;
opendisk_file_func zopendisk32_file;
tell_file_func ztell32_file;
seek_file_func zseek32_file;
} zlib_filefunc64_32_def;
#define ZREAD64(filefunc,filestream,buf,size) ((*((filefunc).zfile_func64.zread_file)) ((filefunc).zfile_func64.opaque,filestream,buf,size))
#define ZWRITE64(filefunc,filestream,buf,size) ((*((filefunc).zfile_func64.zwrite_file)) ((filefunc).zfile_func64.opaque,filestream,buf,size))
/*#define ZTELL64(filefunc,filestream) ((*((filefunc).ztell64_file)) ((filefunc).opaque,filestream))*/
/*#define ZSEEK64(filefunc,filestream,pos,mode) ((*((filefunc).zseek64_file)) ((filefunc).opaque,filestream,pos,mode))*/
#define ZCLOSE64(filefunc,filestream) ((*((filefunc).zfile_func64.zclose_file)) ((filefunc).zfile_func64.opaque,filestream))
#define ZERROR64(filefunc,filestream) ((*((filefunc).zfile_func64.zerror_file)) ((filefunc).zfile_func64.opaque,filestream))
voidpf call_zopen64 OF((const zlib_filefunc64_32_def* pfilefunc,const void*filename,int mode));
voidpf call_zopendisk64 OF((const zlib_filefunc64_32_def* pfilefunc, voidpf filestream, int number_disk, int mode));
long call_zseek64 OF((const zlib_filefunc64_32_def* pfilefunc,voidpf filestream, ZPOS64_T offset, int origin));
ZPOS64_T call_ztell64 OF((const zlib_filefunc64_32_def* pfilefunc,voidpf filestream));
void fill_zlib_filefunc64_32_def_from_filefunc32 OF((zlib_filefunc64_32_def* p_filefunc64_32,const zlib_filefunc_def* p_filefunc32));
#define ZOPEN64(filefunc,filename,mode) (call_zopen64((&(filefunc)),(filename),(mode)))
#define ZOPENDISK64(filefunc,filestream,diskn,mode) (call_zopendisk64((&(filefunc)),(filestream),(diskn),(mode)))
#define ZTELL64(filefunc,filestream) (call_ztell64((&(filefunc)),(filestream)))
#define ZSEEK64(filefunc,filestream,pos,mode) (call_zseek64((&(filefunc)),(filestream),(pos),(mode)))
#ifdef __cplusplus
}
#endif
#endif
module minizip [system] {
header "include.h"
export *
}
/*
Additional tools for Minizip
Code: Xavier Roche '2004
License: Same as ZLIB (www.gzip.org)
*/
/* Code */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "zlib.h"
#include "unzip.h"
#include "mztools.h"
#define READ_8(adr) ((unsigned char)*(adr))
#define READ_16(adr) ( READ_8(adr) | (READ_8(adr+1) << 8) )
#define READ_32(adr) ( READ_16(adr) | (READ_16((adr)+2) << 16) )
#define WRITE_8(buff, n) do { \
*((unsigned char*)(buff)) = (unsigned char) ((n) & 0xff); \
} while(0)
#define WRITE_16(buff, n) do { \
WRITE_8((unsigned char*)(buff), n); \
WRITE_8(((unsigned char*)(buff)) + 1, (n) >> 8); \
} while(0)
#define WRITE_32(buff, n) do { \
WRITE_16((unsigned char*)(buff), (n) & 0xffff); \
WRITE_16((unsigned char*)(buff) + 2, (n) >> 16); \
} while(0)
extern int ZEXPORT unzRepair(file, fileOut, fileOutTmp, nRecovered, bytesRecovered)
const char* file;
const char* fileOut;
const char* fileOutTmp;
uLong* nRecovered;
uLong* bytesRecovered;
{
int err = Z_OK;
FILE* fpZip = fopen(file, "rb");
FILE* fpOut = fopen(fileOut, "wb");
FILE* fpOutCD = fopen(fileOutTmp, "wb");
if (fpZip != NULL && fpOut != NULL) {
int entries = 0;
uLong totalBytes = 0;
char header[30];
char filename[256];
char extra[1024];
int offset = 0;
int offsetCD = 0;
while ( fread(header, 1, 30, fpZip) == 30 ) {
int currentOffset = offset;
/* File entry */
if (READ_32(header) == 0x04034b50) {
unsigned int version = READ_16(header + 4);
unsigned int gpflag = READ_16(header + 6);
unsigned int method = READ_16(header + 8);
unsigned int filetime = READ_16(header + 10);
unsigned int filedate = READ_16(header + 12);
unsigned int crc = READ_32(header + 14); /* crc */
unsigned int cpsize = READ_32(header + 18); /* compressed size */
unsigned int uncpsize = READ_32(header + 22); /* uncompressed sz */
unsigned int fnsize = READ_16(header + 26); /* file name length */
unsigned int extsize = READ_16(header + 28); /* extra field length */
filename[0] = extra[0] = '\0';
/* Header */
if (fwrite(header, 1, 30, fpOut) == 30) {
offset += 30;
} else {
err = Z_ERRNO;
break;
}
/* Filename */
if (fnsize > 0) {
if (fread(filename, 1, fnsize, fpZip) == fnsize) {
if (fwrite(filename, 1, fnsize, fpOut) == fnsize) {
offset += fnsize;
} else {
err = Z_ERRNO;
break;
}
} else {
err = Z_ERRNO;
break;
}
} else {
err = Z_STREAM_ERROR;
break;
}
/* Extra field */
if (extsize > 0) {
if (fread(extra, 1, extsize, fpZip) == extsize) {
if (fwrite(extra, 1, extsize, fpOut) == extsize) {
offset += extsize;
} else {
err = Z_ERRNO;
break;
}
} else {
err = Z_ERRNO;
break;
}
}
/* Data */
{
int dataSize = cpsize;
if (dataSize == 0) {
dataSize = uncpsize;
}
if (dataSize > 0) {
char* data = malloc(dataSize);
if (data != NULL) {
if ((int)fread(data, 1, dataSize, fpZip) == dataSize) {
if ((int)fwrite(data, 1, dataSize, fpOut) == dataSize) {
offset += dataSize;
totalBytes += dataSize;
} else {
err = Z_ERRNO;
}
} else {
err = Z_ERRNO;
}
free(data);
if (err != Z_OK) {
break;
}
} else {
err = Z_MEM_ERROR;
break;
}
}
}
/* Central directory entry */
{
char centralDirectoryEntryHeader[46];
//char* comment = "";
//int comsize = (int) strlen(comment);
WRITE_32(centralDirectoryEntryHeader, 0x02014b50);
WRITE_16(centralDirectoryEntryHeader + 4, version);
WRITE_16(centralDirectoryEntryHeader + 6, version);
WRITE_16(centralDirectoryEntryHeader + 8, gpflag);
WRITE_16(centralDirectoryEntryHeader + 10, method);
WRITE_16(centralDirectoryEntryHeader + 12, filetime);
WRITE_16(centralDirectoryEntryHeader + 14, filedate);
WRITE_32(centralDirectoryEntryHeader + 16, crc);
WRITE_32(centralDirectoryEntryHeader + 20, cpsize);
WRITE_32(centralDirectoryEntryHeader + 24, uncpsize);
WRITE_16(centralDirectoryEntryHeader + 28, fnsize);
WRITE_16(centralDirectoryEntryHeader + 30, extsize);
WRITE_16(centralDirectoryEntryHeader + 32, 0 /*comsize*/);
WRITE_16(centralDirectoryEntryHeader + 34, 0); /* disk # */
WRITE_16(centralDirectoryEntryHeader + 36, 0); /* int attrb */
WRITE_32(centralDirectoryEntryHeader + 38, 0); /* ext attrb */
WRITE_32(centralDirectoryEntryHeader + 42, currentOffset);
/* Header */
if (fwrite(centralDirectoryEntryHeader, 1, 46, fpOutCD) == 46) {
offsetCD += 46;
/* Filename */
if (fnsize > 0) {
if (fwrite(filename, 1, fnsize, fpOutCD) == fnsize) {
offsetCD += fnsize;
} else {
err = Z_ERRNO;
break;
}
} else {
err = Z_STREAM_ERROR;
break;
}
/* Extra field */
if (extsize > 0) {
if (fwrite(extra, 1, extsize, fpOutCD) == extsize) {
offsetCD += extsize;
} else {
err = Z_ERRNO;
break;
}
}
/* Comment field */
/*
if (comsize > 0) {
if ((int)fwrite(comment, 1, comsize, fpOutCD) == comsize) {
offsetCD += comsize;
} else {
err = Z_ERRNO;
break;
}
}
*/
} else {
err = Z_ERRNO;
break;
}
}
/* Success */
entries++;
} else {
break;
}
}
/* Final central directory */
{
int entriesZip = entries;
char finalCentralDirectoryHeader[22];
//char* comment = ""; // "ZIP File recovered by zlib/minizip/mztools";
//int comsize = (int) strlen(comment);
if (entriesZip > 0xffff) {
entriesZip = 0xffff;
}
WRITE_32(finalCentralDirectoryHeader, 0x06054b50);
WRITE_16(finalCentralDirectoryHeader + 4, 0); /* disk # */
WRITE_16(finalCentralDirectoryHeader + 6, 0); /* disk # */
WRITE_16(finalCentralDirectoryHeader + 8, entriesZip); /* hack */
WRITE_16(finalCentralDirectoryHeader + 10, entriesZip); /* hack */
WRITE_32(finalCentralDirectoryHeader + 12, offsetCD); /* size of CD */
WRITE_32(finalCentralDirectoryHeader + 16, offset); /* offset to CD */
WRITE_16(finalCentralDirectoryHeader + 20, 0 /*comsize*/); /* comment */
/* Header */
if (fwrite(finalCentralDirectoryHeader, 1, 22, fpOutCD) == 22) {
/* Comment field */
/*
if (comsize > 0) {
if ((int)fwrite(comment, 1, comsize, fpOutCD) != comsize) {
err = Z_ERRNO;
}
}
*/
} else {
err = Z_ERRNO;
}
}
/* Final merge (file + central directory) */
fclose(fpOutCD);
if (err == Z_OK) {
fpOutCD = fopen(fileOutTmp, "rb");
if (fpOutCD != NULL) {
int nRead;
char buffer[8192];
while ( (nRead = (int)fread(buffer, 1, sizeof(buffer), fpOutCD)) > 0) {
if ((int)fwrite(buffer, 1, nRead, fpOut) != nRead) {
err = Z_ERRNO;
break;
}
}
fclose(fpOutCD);
}
}
/* Close */
fclose(fpZip);
fclose(fpOut);
/* Wipe temporary file */
(void)remove(fileOutTmp);
/* Number of recovered entries */
if (err == Z_OK) {
if (nRecovered != NULL) {
*nRecovered = entries;
}
if (bytesRecovered != NULL) {
*bytesRecovered = totalBytes;
}
}
} else {
err = Z_STREAM_ERROR;
}
return err;
}
/*
Additional tools for Minizip
Code: Xavier Roche '2004
License: Same as ZLIB (www.gzip.org)
*/
#ifndef _zip_tools_H
#define _zip_tools_H
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ZLIB_H
#include "zlib.h"
#endif
#include "unzip.h"
/* Repair a ZIP file (missing central directory)
file: file to recover
fileOut: output file after recovery
fileOutTmp: temporary file name used for recovery
*/
extern int ZEXPORT unzRepair(const char* file,
const char* fileOut,
const char* fileOutTmp,
uLong* nRecovered,
uLong* bytesRecovered);
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 24/01/2003
This file implements a random data pool based on the use of an external
entropy function. It is based on the ideas advocated by Peter Gutmann in
his work on pseudo random sequence generators. It is not a 'paranoid'
random sequence generator and no attempt is made to protect the pool
from prying eyes either by memory locking or by techniques to obscure
its location in memory.
*/
#include <memory.h>
#include "prng.h"
#if defined(__cplusplus)
extern "C"
{
#endif
/* mix a random data pool using the SHA1 compression function (as */
/* suggested by Peter Gutmann in his paper on random pools) */
static void prng_mix(unsigned char buf[])
{ unsigned int i, len;
sha1_ctx ctx[1];
/*lint -e{663} unusual array to pointer conversion */
for(i = 0; i < PRNG_POOL_SIZE; i += SHA1_DIGEST_SIZE)
{
/* copy digest size pool block into SHA1 hash block */
memcpy(ctx->hash, buf + (i ? i : PRNG_POOL_SIZE)
- SHA1_DIGEST_SIZE, SHA1_DIGEST_SIZE);
/* copy data from pool into the SHA1 data buffer */
len = PRNG_POOL_SIZE - i;
memcpy(ctx->wbuf, buf + i, (len > SHA1_BLOCK_SIZE ? SHA1_BLOCK_SIZE : len));
if(len < SHA1_BLOCK_SIZE)
memcpy(((char*)ctx->wbuf) + len, buf, SHA1_BLOCK_SIZE - len);
/* compress using the SHA1 compression function */
sha1_compile(ctx);
/* put digest size block back into the random pool */
memcpy(buf + i, ctx->hash, SHA1_DIGEST_SIZE);
}
}
/* refresh the output buffer and update the random pool by adding */
/* entropy and remixing */
static void update_pool(prng_ctx ctx[1])
{ unsigned int i = 0;
/* transfer random pool data to the output buffer */
memcpy(ctx->obuf, ctx->rbuf, PRNG_POOL_SIZE);
/* enter entropy data into the pool */
while(i < PRNG_POOL_SIZE)
i += ctx->entropy(ctx->rbuf + i, PRNG_POOL_SIZE - i);
/* invert and xor the original pool data into the pool */
for(i = 0; i < PRNG_POOL_SIZE; ++i)
ctx->rbuf[i] ^= ~ctx->obuf[i];
/* mix the pool and the output buffer */
prng_mix(ctx->rbuf);
prng_mix(ctx->obuf);
}
void prng_init(prng_entropy_fn fun, prng_ctx ctx[1])
{ int i;
/* clear the buffers and the counter in the context */
memset(ctx, 0, sizeof(prng_ctx));
/* set the pointer to the entropy collection function */
ctx->entropy = fun;
/* initialise the random data pool */
update_pool(ctx);
/* mix the pool a minimum number of times */
for(i = 0; i < PRNG_MIN_MIX; ++i)
prng_mix(ctx->rbuf);
/* update the pool to prime the pool output buffer */
update_pool(ctx);
}
/* provide random bytes from the random data pool */
void prng_rand(unsigned char data[], unsigned int data_len, prng_ctx ctx[1])
{ unsigned char *rp = data;
unsigned int len, pos = ctx->pos;
while(data_len)
{
/* transfer 'data_len' bytes (or the number of bytes remaining */
/* the pool output buffer if less) into the output */
len = (data_len < PRNG_POOL_SIZE - pos ? data_len : PRNG_POOL_SIZE - pos);
memcpy(rp, ctx->obuf + pos, len);
rp += len; /* update ouput buffer position pointer */
pos += len; /* update pool output buffer pointer */
data_len -= len; /* update the remaining data count */
/* refresh the random pool if necessary */
if(pos == PRNG_POOL_SIZE)
{
update_pool(ctx); pos = 0;
}
}
ctx->pos = pos;
}
void prng_end(prng_ctx ctx[1])
{
/* ensure the data in the context is destroyed */
memset(ctx, 0, sizeof(prng_ctx));
}
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman < >, Worcester, UK.
All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 24/01/2003
This is the header file for an implementation of a random data pool based on
the use of an external entropy function (inspired by Peter Gutmann's work).
*/
#ifndef _PRNG_H
#define _PRNG_H
#include "sha1.h"
#define PRNG_POOL_LEN 256 /* minimum random pool size */
#define PRNG_MIN_MIX 20 /* min initial pool mixing iterations */
/* ensure that pool length is a multiple of the SHA1 digest size */
#define PRNG_POOL_SIZE (SHA1_DIGEST_SIZE * (1 + (PRNG_POOL_LEN - 1) / SHA1_DIGEST_SIZE))
#if defined(__cplusplus)
extern "C"
{
#endif
/* A function for providing entropy is a parameter in the prng_init() */
/* call. This function has the following form and returns a maximum */
/* of 'len' bytes of pseudo random data in the buffer 'buf'. It can */
/* return less than 'len' bytes but will be repeatedly called for more */
/* data in this case. */
typedef int (*prng_entropy_fn)(unsigned char buf[], unsigned int len);
typedef struct
{ unsigned char rbuf[PRNG_POOL_SIZE]; /* the random pool */
unsigned char obuf[PRNG_POOL_SIZE]; /* pool output buffer */
unsigned int pos; /* output buffer position */
prng_entropy_fn entropy; /* entropy function pointer */
} prng_ctx;
/* initialise the random stream generator */
void prng_init(prng_entropy_fn fun, prng_ctx ctx[1]);
/* obtain random bytes from the generator */
void prng_rand(unsigned char data[], unsigned int data_len, prng_ctx ctx[1]);
/* close the random stream generator */
void prng_end(prng_ctx ctx[1]);
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 26/08/2003
This is an implementation of RFC2898, which specifies key derivation from
a password and a salt value.
*/
#include <memory.h>
#include "hmac.h"
#if defined(__cplusplus)
extern "C"
{
#endif
void derive_key(const unsigned char pwd[], /* the PASSWORD */
unsigned int pwd_len, /* and its length */
const unsigned char salt[], /* the SALT and its */
unsigned int salt_len, /* length */
unsigned int iter, /* the number of iterations */
unsigned char key[], /* space for the output key */
unsigned int key_len)/* and its required length */
{
unsigned int i, j, k, n_blk;
unsigned char uu[HASH_OUTPUT_SIZE], ux[HASH_OUTPUT_SIZE];
hmac_ctx c1[1], c2[1], c3[1];
/* set HMAC context (c1) for password */
hmac_sha_begin(c1);
hmac_sha_key(pwd, pwd_len, c1);
/* set HMAC context (c2) for password and salt */
memcpy(c2, c1, sizeof(hmac_ctx));
hmac_sha_data(salt, salt_len, c2);
/* find the number of SHA blocks in the key */
n_blk = 1 + (key_len - 1) / HASH_OUTPUT_SIZE;
for(i = 0; i < n_blk; ++i) /* for each block in key */
{
/* ux[] holds the running xor value */
memset(ux, 0, HASH_OUTPUT_SIZE);
/* set HMAC context (c3) for password and salt */
memcpy(c3, c2, sizeof(hmac_ctx));
/* enter additional data for 1st block into uu */
uu[0] = (unsigned char)((i + 1) >> 24);
uu[1] = (unsigned char)((i + 1) >> 16);
uu[2] = (unsigned char)((i + 1) >> 8);
uu[3] = (unsigned char)(i + 1);
/* this is the key mixing iteration */
for(j = 0, k = 4; j < iter; ++j)
{
/* add previous round data to HMAC */
hmac_sha_data(uu, k, c3);
/* obtain HMAC for uu[] */
hmac_sha_end(uu, HASH_OUTPUT_SIZE, c3);
/* xor into the running xor block */
for(k = 0; k < HASH_OUTPUT_SIZE; ++k)
ux[k] ^= uu[k];
/* set HMAC context (c3) for password */
memcpy(c3, c1, sizeof(hmac_ctx));
}
/* compile key blocks into the key output */
j = 0; k = i * HASH_OUTPUT_SIZE;
while(j < HASH_OUTPUT_SIZE && k < key_len)
key[k++] = ux[j++];
}
}
#ifdef TEST
#include <stdio.h>
struct
{ unsigned int pwd_len;
unsigned int salt_len;
unsigned int it_count;
unsigned char *pwd;
unsigned char salt[32];
unsigned char key[32];
} tests[] =
{
{ 8, 4, 5, (unsigned char*)"password",
{
0x12, 0x34, 0x56, 0x78
},
{
0x5c, 0x75, 0xce, 0xf0, 0x1a, 0x96, 0x0d, 0xf7,
0x4c, 0xb6, 0xb4, 0x9b, 0x9e, 0x38, 0xe6, 0xb5
}
},
{ 8, 8, 5, (unsigned char*)"password",
{
0x12, 0x34, 0x56, 0x78, 0x78, 0x56, 0x34, 0x12
},
{
0xd1, 0xda, 0xa7, 0x86, 0x15, 0xf2, 0x87, 0xe6,
0xa1, 0xc8, 0xb1, 0x20, 0xd7, 0x06, 0x2a, 0x49
}
},
{ 8, 21, 1, (unsigned char*)"password",
{
"ATHENA.MIT.EDUraeburn"
},
{
0xcd, 0xed, 0xb5, 0x28, 0x1b, 0xb2, 0xf8, 0x01,
0x56, 0x5a, 0x11, 0x22, 0xb2, 0x56, 0x35, 0x15
}
},
{ 8, 21, 2, (unsigned char*)"password",
{
"ATHENA.MIT.EDUraeburn"
},
{
0x01, 0xdb, 0xee, 0x7f, 0x4a, 0x9e, 0x24, 0x3e,
0x98, 0x8b, 0x62, 0xc7, 0x3c, 0xda, 0x93, 0x5d
}
},
{ 8, 21, 1200, (unsigned char*)"password",
{
"ATHENA.MIT.EDUraeburn"
},
{
0x5c, 0x08, 0xeb, 0x61, 0xfd, 0xf7, 0x1e, 0x4e,
0x4e, 0xc3, 0xcf, 0x6b, 0xa1, 0xf5, 0x51, 0x2b
}
}
};
int main()
{ unsigned int i, j, key_len = 256;
unsigned char key[256];
printf("\nTest of RFC2898 Password Based Key Derivation");
for(i = 0; i < 5; ++i)
{
derive_key(tests[i].pwd, tests[i].pwd_len, tests[i].salt,
tests[i].salt_len, tests[i].it_count, key, key_len);
printf("\ntest %i: ", i + 1);
printf("key %s", memcmp(tests[i].key, key, 16) ? "is bad" : "is good");
for(j = 0; j < key_len && j < 64; j += 4)
{
if(j % 16 == 0)
printf("\n");
printf("0x%02x%02x%02x%02x ", key[j], key[j + 1], key[j + 2], key[j + 3]);
}
printf(j < key_len ? " ... \n" : "\n");
}
printf("\n");
return 0;
}
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 26/08/2003
This is an implementation of RFC2898, which specifies key derivation from
a password and a salt value.
*/
#ifndef PWD2KEY_H
#define PWD2KEY_H
#if defined(__cplusplus)
extern "C"
{
#endif
void derive_key(
const unsigned char pwd[], /* the PASSWORD, and */
unsigned int pwd_len, /* its length */
const unsigned char salt[], /* the SALT and its */
unsigned int salt_len, /* length */
unsigned int iter, /* the number of iterations */
unsigned char key[], /* space for the output key */
unsigned int key_len); /* and its required length */
#if defined(__cplusplus)
}
#endif
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 01/08/2005
This is a byte oriented version of SHA1 that operates on arrays of bytes
stored in memory.
*/
#include <string.h> /* for memcpy() etc. */
#include "sha1.h"
#include "brg_endian.h"
#if defined(__cplusplus)
extern "C"
{
#endif
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
#pragma intrinsic(memcpy)
#endif
#if 0 && defined(_MSC_VER)
#define rotl32 _lrotl
#define rotr32 _lrotr
#else
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
#endif
#if !defined(bswap_32)
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
#endif
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
#define SWAP_BYTES
#else
#undef SWAP_BYTES
#endif
#if defined(SWAP_BYTES)
#define bsw_32(p,n) \
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
#else
#define bsw_32(p,n)
#endif
#define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
#if 0
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define parity(x,y,z) ((x) ^ (y) ^ (z))
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#else /* Discovered by Rich Schroeppel and Colin Plumb */
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define parity(x,y,z) ((x) ^ (y) ^ (z))
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
#endif
/* Compile 64 bytes of hash data into SHA1 context. Note */
/* that this routine assumes that the byte order in the */
/* ctx->wbuf[] at this point is in such an order that low */
/* address bytes in the ORIGINAL byte stream will go in */
/* this buffer to the high end of 32-bit words on BOTH big */
/* and little endian systems */
#ifdef ARRAY
#define q(v,n) v[n]
#else
#define q(v,n) v##n
#endif
#define one_cycle(v,a,b,c,d,e,f,k,h) \
q(v,e) += rotr32(q(v,a),27) + \
f(q(v,b),q(v,c),q(v,d)) + k + h; \
q(v,b) = rotr32(q(v,b), 2)
#define five_cycle(v,f,k,i) \
one_cycle(v, 0,1,2,3,4, f,k,hf(i )); \
one_cycle(v, 4,0,1,2,3, f,k,hf(i+1)); \
one_cycle(v, 3,4,0,1,2, f,k,hf(i+2)); \
one_cycle(v, 2,3,4,0,1, f,k,hf(i+3)); \
one_cycle(v, 1,2,3,4,0, f,k,hf(i+4))
VOID_RETURN sha1_compile(sha1_ctx ctx[1])
{ uint_32t *w = ctx->wbuf;
#ifdef ARRAY
uint_32t v[5];
memcpy(v, ctx->hash, 5 * sizeof(uint_32t));
#else
uint_32t v0, v1, v2, v3, v4;
v0 = ctx->hash[0]; v1 = ctx->hash[1];
v2 = ctx->hash[2]; v3 = ctx->hash[3];
v4 = ctx->hash[4];
#endif
#define hf(i) w[i]
five_cycle(v, ch, 0x5a827999, 0);
five_cycle(v, ch, 0x5a827999, 5);
five_cycle(v, ch, 0x5a827999, 10);
one_cycle(v,0,1,2,3,4, ch, 0x5a827999, hf(15)); \
#undef hf
#define hf(i) (w[(i) & 15] = rotl32( \
w[((i) + 13) & 15] ^ w[((i) + 8) & 15] \
^ w[((i) + 2) & 15] ^ w[(i) & 15], 1))
one_cycle(v,4,0,1,2,3, ch, 0x5a827999, hf(16));
one_cycle(v,3,4,0,1,2, ch, 0x5a827999, hf(17));
one_cycle(v,2,3,4,0,1, ch, 0x5a827999, hf(18));
one_cycle(v,1,2,3,4,0, ch, 0x5a827999, hf(19));
five_cycle(v, parity, 0x6ed9eba1, 20);
five_cycle(v, parity, 0x6ed9eba1, 25);
five_cycle(v, parity, 0x6ed9eba1, 30);
five_cycle(v, parity, 0x6ed9eba1, 35);
five_cycle(v, maj, 0x8f1bbcdc, 40);
five_cycle(v, maj, 0x8f1bbcdc, 45);
five_cycle(v, maj, 0x8f1bbcdc, 50);
five_cycle(v, maj, 0x8f1bbcdc, 55);
five_cycle(v, parity, 0xca62c1d6, 60);
five_cycle(v, parity, 0xca62c1d6, 65);
five_cycle(v, parity, 0xca62c1d6, 70);
five_cycle(v, parity, 0xca62c1d6, 75);
#ifdef ARRAY
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
ctx->hash[4] += v[4];
#else
ctx->hash[0] += v0; ctx->hash[1] += v1;
ctx->hash[2] += v2; ctx->hash[3] += v3;
ctx->hash[4] += v4;
#endif
}
VOID_RETURN sha1_begin(sha1_ctx ctx[1])
{
ctx->count[0] = ctx->count[1] = 0;
ctx->hash[0] = 0x67452301;
ctx->hash[1] = 0xefcdab89;
ctx->hash[2] = 0x98badcfe;
ctx->hash[3] = 0x10325476;
ctx->hash[4] = 0xc3d2e1f0;
}
/* SHA1 hash data in an array of bytes into hash buffer and */
/* call the hash_compile function as required. */
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1])
{ uint_32t pos = (uint_32t)(ctx->count[0] & SHA1_MASK),
space = SHA1_BLOCK_SIZE - pos;
const unsigned char *sp = data;
if((ctx->count[0] += len) < len)
++(ctx->count[1]);
while(len >= space) /* tranfer whole blocks if possible */
{
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, space);
sp += space; len -= space; space = SHA1_BLOCK_SIZE; pos = 0;
bsw_32(ctx->wbuf, SHA1_BLOCK_SIZE >> 2);
sha1_compile(ctx);
}
memcpy(((unsigned char*)ctx->wbuf) + pos, sp, len);
}
/* SHA1 final padding and digest calculation */
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1])
{ uint_32t i = (uint_32t)(ctx->count[0] & SHA1_MASK);
/* put bytes in the buffer in an order in which references to */
/* 32-bit words will put bytes with lower addresses into the */
/* top of 32 bit words on BOTH big and little endian machines */
bsw_32(ctx->wbuf, (i + 3) >> 2);
/* we now need to mask valid bytes and add the padding which is */
/* a single 1 bit and as many zero bits as necessary. Note that */
/* we can always add the first padding byte here because the */
/* buffer always has at least one empty slot */
ctx->wbuf[i >> 2] &= 0xffffff80 << 8 * (~i & 3);
ctx->wbuf[i >> 2] |= 0x00000080 << 8 * (~i & 3);
/* we need 9 or more empty positions, one for the padding byte */
/* (above) and eight for the length count. If there is not */
/* enough space, pad and empty the buffer */
if(i > SHA1_BLOCK_SIZE - 9)
{
if(i < 60) ctx->wbuf[15] = 0;
sha1_compile(ctx);
i = 0;
}
else /* compute a word index for the empty buffer positions */
i = (i >> 2) + 1;
while(i < 14) /* and zero pad all but last two positions */
ctx->wbuf[i++] = 0;
/* the following 32-bit length fields are assembled in the */
/* wrong byte order on little endian machines but this is */
/* corrected later since they are only ever used as 32-bit */
/* word values. */
ctx->wbuf[14] = (ctx->count[1] << 3) | (ctx->count[0] >> 29);
ctx->wbuf[15] = ctx->count[0] << 3;
sha1_compile(ctx);
/* extract the hash value as bytes in case the hash buffer is */
/* misaligned for 32-bit words */
for(i = 0; i < SHA1_DIGEST_SIZE; ++i)
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
}
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len)
{ sha1_ctx cx[1];
sha1_begin(cx); sha1_hash(data, len, cx); sha1_end(hval, cx);
}
#if defined(__cplusplus)
}
#endif
/*
---------------------------------------------------------------------------
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 01/08/2005
*/
#ifndef _SHA1_H
#define _SHA1_H
#include <stdlib.h>
#include "brg_types.h"
#define SHA1_BLOCK_SIZE 64
#define SHA1_DIGEST_SIZE 20
#if defined(__cplusplus)
extern "C"
{
#endif
/* type to hold the SHA256 context */
typedef struct
{ uint_32t count[2];
uint_32t hash[5];
uint_32t wbuf[16];
} sha1_ctx;
/* Note that these prototypes are the same for both bit and */
/* byte oriented implementations. However the length fields */
/* are in bytes or bits as appropriate for the version used */
/* and bit sequences are input as arrays of bytes in which */
/* bit sequences run from the most to the least significant */
/* end of each byte */
VOID_RETURN sha1_compile(sha1_ctx ctx[1]);
VOID_RETURN sha1_begin(sha1_ctx ctx[1]);
VOID_RETURN sha1_hash(const unsigned char data[], unsigned long len, sha1_ctx ctx[1]);
VOID_RETURN sha1_end(unsigned char hval[], sha1_ctx ctx[1]);
VOID_RETURN sha1(unsigned char hval[], const unsigned char data[], unsigned long len);
#if defined(__cplusplus)
}
#endif
#endif
/* unzip.c -- IO for uncompress .zip files using zlib
Version 1.1, February 14h, 2010
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications of Unzip for Zip64
Copyright (C) 2007-2008 Even Rouault
Modifications for Zip64 support on both zip and unzip
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
Modifications for AES, PKWARE disk spanning
Copyright (C) 2010-2014 Nathan Moinvaziri
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/*#ifndef NOUNCRYPT
# define NOUNCRYPT
#endif*/
#include "zlib.h"
#include "unzip.h"
#include "Common.h"
#ifdef STDC
# include <stddef.h>
# include <string.h>
# include <stdlib.h>
#endif
#ifdef NO_ERRNO_H
extern int errno;
#else
# include <errno.h>
#endif
#ifdef HAVE_AES
# define AES_METHOD (99)
# define AES_PWVERIFYSIZE (2)
# define AES_MAXSALTLENGTH (16)
# define AES_AUTHCODESIZE (10)
# define AES_HEADERSIZE (11)
# define AES_KEYSIZE(mode) (64 + (mode * 64))
# include "aes.h"
# include "fileenc.h"
#endif
#ifndef NOUNCRYPT
# include "crypt.h"
#endif
#ifndef local
# define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */
#define DISKHEADERMAGIC (0x08074b50)
#define LOCALHEADERMAGIC (0x04034b50)
#define CENTRALHEADERMAGIC (0x02014b50)
#define ENDHEADERMAGIC (0x06054b50)
#define ZIP64ENDHEADERMAGIC (0x06064b50)
#define ZIP64ENDLOCHEADERMAGIC (0x07064b50)
#define SIZECENTRALDIRITEM (0x2e)
#define SIZECENTRALHEADERLOCATOR (0x14) /* 20 */
#define SIZEZIPLOCALHEADER (0x1e)
#ifndef BUFREADCOMMENT
# define BUFREADCOMMENT (0x400)
#endif
#ifndef UNZ_BUFSIZE
# define UNZ_BUFSIZE (64 * 1024)
#endif
#ifndef UNZ_MAXFILENAMEINZIP
# define UNZ_MAXFILENAMEINZIP (256)
#endif
#ifndef ALLOC
# define ALLOC(size) (malloc(size))
#endif
#ifndef TRYFREE
# define TRYFREE(p) {if (p) free(p); }
#endif
const char unz_copyright[] =
" unzip 1.01 Copyright 1998-2004 Gilles Vollant - http://www.winimage.com/zLibDll";
/* unz_file_info_interntal contain internal info about a file in zipfile*/
typedef struct unz_file_info64_internal_s {
ZPOS64_T offset_curfile; /* relative offset of local header 8 bytes */
ZPOS64_T byte_before_the_zipfile; /* byte before the zipfile, (>0 for sfx) */
#ifdef HAVE_AES
uLong aes_encryption_mode;
uLong aes_compression_method;
uLong aes_version;
#endif
} unz_file_info64_internal;
/* file_in_zip_read_info_s contain internal information about a file in zipfile */
typedef struct {
Bytef *read_buffer; /* internal buffer for compressed data */
z_stream stream; /* zLib stream structure for inflate */
#ifdef HAVE_BZIP2
bz_stream bstream; /* bzLib stream structure for bziped */
#endif
#ifdef HAVE_AES
fcrypt_ctx aes_ctx;
#endif
ZPOS64_T pos_in_zipfile; /* position in byte on the zipfile, for fseek */
uLong stream_initialised; /* flag set if stream structure is initialised */
ZPOS64_T offset_local_extrafield; /* offset of the local extra field */
uInt size_local_extrafield; /* size of the local extra field */
ZPOS64_T pos_local_extrafield; /* position in the local extra field in read */
ZPOS64_T total_out_64;
uLong crc32; /* crc32 of all data uncompressed */
uLong crc32_wait; /* crc32 we must obtain after decompress all */
ZPOS64_T rest_read_compressed; /* number of byte to be decompressed */
ZPOS64_T rest_read_uncompressed; /* number of byte to be obtained after decomp */
zlib_filefunc64_32_def z_filefunc;
voidpf filestream; /* io structore of the zipfile */
uLong compression_method; /* compression method (0==store) */
ZPOS64_T byte_before_the_zipfile; /* byte before the zipfile, (>0 for sfx) */
int raw;
} file_in_zip64_read_info_s;
/* unz64_s contain internal information about the zipfile */
typedef struct {
zlib_filefunc64_32_def z_filefunc;
voidpf filestream; /* io structure of the current zipfile */
voidpf filestream_with_CD; /* io structure of the disk with the central directory */
unz_global_info64 gi; /* public global information */
ZPOS64_T byte_before_the_zipfile; /* byte before the zipfile, (>0 for sfx)*/
ZPOS64_T num_file; /* number of the current file in the zipfile*/
ZPOS64_T pos_in_central_dir; /* pos of the current file in the central dir*/
ZPOS64_T current_file_ok; /* flag about the usability of the current file*/
ZPOS64_T central_pos; /* position of the beginning of the central dir*/
uLong number_disk; /* number of the current disk, used for spanning ZIP*/
ZPOS64_T size_central_dir; /* size of the central directory */
ZPOS64_T offset_central_dir; /* offset of start of central directory with
respect to the starting disk number */
unz_file_info64 cur_file_info; /* public info about the current file in zip*/
unz_file_info64_internal cur_file_info_internal;
/* private info about it*/
file_in_zip64_read_info_s *pfile_in_zip_read;
/* structure about the current file if we are decompressing it */
int isZip64; /* is the current file zip64 */
#ifndef NOUNCRYPT
unsigned long keys[3]; /* keys defining the pseudo-random sequence */
const unsigned long *pcrc_32_tab;
#endif
} unz64_s;
/* Translate date/time from Dos format to tm_unz (readable more easily) */
local void unz64local_DosDateToTmuDate(ZPOS64_T ulDosDate, tm_unz *ptm)
{
ZPOS64_T uDate = (ZPOS64_T)(ulDosDate >> 16);
ptm->tm_mday = (uInt)(uDate & 0x1f);
ptm->tm_mon = (uInt)((((uDate) & 0x1E0) / 0x20) - 1);
ptm->tm_year = (uInt)(((uDate & 0x0FE00) / 0x0200) + 1980);
ptm->tm_hour = (uInt)((ulDosDate & 0xF800) / 0x800);
ptm->tm_min = (uInt)((ulDosDate & 0x7E0) / 0x20);
ptm->tm_sec = (uInt)(2 * (ulDosDate & 0x1f));
#define unz64local_in_range(min, max, value) ((min) <= (value) && (value) <= (max))
if (!unz64local_in_range(0, 11, ptm->tm_mon) ||
!unz64local_in_range(1, 31, ptm->tm_mday) ||
!unz64local_in_range(0, 23, ptm->tm_hour) ||
!unz64local_in_range(0, 59, ptm->tm_min) ||
!unz64local_in_range(0, 59, ptm->tm_sec))
/* Invalid date stored, so don't return it. */
memset(ptm, 0, sizeof(tm_unz));
#undef unz64local_in_range
}
/* Read a byte from a gz_stream; Return EOF for end of file. */
local int unz64local_getByte(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, int *pi)
{
unsigned char c;
int err = (int)ZREAD64(*pzlib_filefunc_def, filestream, &c, 1);
if (err == 1) {
*pi = (int)c;
return UNZ_OK;
}
if (ZERROR64(*pzlib_filefunc_def, filestream))
return UNZ_ERRNO;
return UNZ_EOF;
}
local int unz64local_getShort OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, uLong * pX));
local int unz64local_getShort(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, uLong *pX)
{
uLong x;
int i = 0;
int err;
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (uLong)i;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((uLong)i) << 8;
if (err == UNZ_OK)
*pX = x;
else
*pX = 0;
return err;
}
local int unz64local_getLong OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, uLong * pX));
local int unz64local_getLong(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, uLong *pX)
{
uLong x;
int i = 0;
int err;
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (uLong)i;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((uLong)i) << 8;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((uLong)i) << 16;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((uLong)i) << 24;
if (err == UNZ_OK)
*pX = x;
else
*pX = 0;
return err;
}
local int unz64local_getLong64 OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, ZPOS64_T * pX));
local int unz64local_getLong64(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, ZPOS64_T *pX)
{
ZPOS64_T x;
int i = 0;
int err;
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (ZPOS64_T)i;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 8;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 16;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 24;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 32;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 40;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 48;
if (err == UNZ_OK)
err = unz64local_getByte(pzlib_filefunc_def, filestream, &i);
x |= ((ZPOS64_T)i) << 56;
if (err == UNZ_OK)
*pX = x;
else
*pX = 0;
return err;
}
/* Locate the Central directory of a zip file (at the end, just before the global comment) */
local ZPOS64_T unz64local_SearchCentralDir OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream));
local ZPOS64_T unz64local_SearchCentralDir(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream)
{
unsigned char *buf;
ZPOS64_T file_size;
ZPOS64_T back_read = 4;
ZPOS64_T max_back = 0xffff; /* maximum size of global comment */
ZPOS64_T pos_found = 0;
uLong read_size;
ZPOS64_T read_pos;
int i;
buf = (unsigned char *)ALLOC(BUFREADCOMMENT + 4);
if (buf == NULL)
return 0;
if (ZSEEK64(*pzlib_filefunc_def, filestream, 0, ZLIB_FILEFUNC_SEEK_END) != 0) {
TRYFREE(buf);
return 0;
}
file_size = ZTELL64(*pzlib_filefunc_def, filestream);
if (max_back > file_size)
max_back = file_size;
while (back_read < max_back) {
if (back_read + BUFREADCOMMENT > max_back)
back_read = max_back;
else
back_read += BUFREADCOMMENT;
read_pos = file_size - back_read;
read_size = ((BUFREADCOMMENT + 4) < (file_size - read_pos)) ?
(BUFREADCOMMENT + 4) : (uLong)(file_size - read_pos);
if (ZSEEK64(*pzlib_filefunc_def, filestream, read_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
break;
if (ZREAD64(*pzlib_filefunc_def, filestream, buf, read_size) != read_size)
break;
for (i = (int)read_size - 3; (i--) > 0; )
if (((*(buf + i)) == (ENDHEADERMAGIC & 0xff)) &&
((*(buf + i + 1)) == (ENDHEADERMAGIC >> 8 & 0xff)) &&
((*(buf + i + 2)) == (ENDHEADERMAGIC >> 16 & 0xff)) &&
((*(buf + i + 3)) == (ENDHEADERMAGIC >> 24 & 0xff))) {
pos_found = read_pos + i;
break;
}
if (pos_found != 0)
break;
}
TRYFREE(buf);
return pos_found;
}
/* Locate the Central directory 64 of a zipfile (at the end, just before the global comment) */
local ZPOS64_T unz64local_SearchCentralDir64 OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream,
const ZPOS64_T endcentraloffset));
local ZPOS64_T unz64local_SearchCentralDir64(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream,
const ZPOS64_T endcentraloffset)
{
ZPOS64_T offset;
uLong uL;
/* Zip64 end of central directory locator */
if (ZSEEK64(*pzlib_filefunc_def, filestream, endcentraloffset - SIZECENTRALHEADERLOCATOR, ZLIB_FILEFUNC_SEEK_SET) != 0)
return 0;
/* read locator signature */
if (unz64local_getLong(pzlib_filefunc_def, filestream, &uL) != UNZ_OK)
return 0;
if (uL != ZIP64ENDLOCHEADERMAGIC)
return 0;
/* number of the disk with the start of the zip64 end of central directory */
if (unz64local_getLong(pzlib_filefunc_def, filestream, &uL) != UNZ_OK)
return 0;
/* relative offset of the zip64 end of central directory record */
if (unz64local_getLong64(pzlib_filefunc_def, filestream, &offset) != UNZ_OK)
return 0;
/* total number of disks */
if (unz64local_getLong(pzlib_filefunc_def, filestream, &uL) != UNZ_OK)
return 0;
/* Goto end of central directory record */
if (ZSEEK64(*pzlib_filefunc_def, filestream, offset, ZLIB_FILEFUNC_SEEK_SET) != 0)
return 0;
/* the signature */
if (unz64local_getLong(pzlib_filefunc_def, filestream, &uL) != UNZ_OK)
return 0;
if (uL != ZIP64ENDHEADERMAGIC)
return 0;
return offset;
}
local unzFile unzOpenInternal(const void *path, zlib_filefunc64_32_def *pzlib_filefunc64_32_def)
{
unz64_s us;
unz64_s *s;
ZPOS64_T central_pos;
uLong uL;
voidpf filestream = NULL;
ZPOS64_T number_entry_CD;
int err = UNZ_OK;
if (unz_copyright[0] != ' ')
return NULL;
us.filestream = NULL;
us.filestream_with_CD = NULL;
us.z_filefunc.zseek32_file = NULL;
us.z_filefunc.ztell32_file = NULL;
if (pzlib_filefunc64_32_def == NULL)
fill_fopen64_filefunc(&us.z_filefunc.zfile_func64);
else
us.z_filefunc = *pzlib_filefunc64_32_def;
us.filestream = ZOPEN64(us.z_filefunc, path, ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_EXISTING);
if (us.filestream == NULL)
return NULL;
us.filestream_with_CD = us.filestream;
us.isZip64 = 0;
/* Use unz64local_SearchCentralDir first. Only based on the result
is it necessary to locate the unz64local_SearchCentralDir64 */
central_pos = unz64local_SearchCentralDir(&us.z_filefunc, us.filestream);
if (central_pos) {
if (ZSEEK64(us.z_filefunc, us.filestream, central_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = UNZ_ERRNO;
/* the signature, already checked */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
/* number of this disk */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
us.number_disk = uL;
/* number of the disk with the start of the central directory */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
us.gi.number_disk_with_CD = uL;
/* total number of entries in the central directory on this disk */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
us.gi.number_entry = uL;
/* total number of entries in the central directory */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
number_entry_CD = uL;
if (number_entry_CD != us.gi.number_entry)
err = UNZ_BADZIPFILE;
/* size of the central directory */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
us.size_central_dir = uL;
/* offset of start of central directory with respect to the starting disk number */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
us.offset_central_dir = uL;
/* zipfile comment length */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &us.gi.size_comment) != UNZ_OK)
err = UNZ_ERRNO;
if ((err == UNZ_OK) &&
((us.gi.number_entry == 0xffff) || (us.size_central_dir == 0xffff) || (us.offset_central_dir == 0xffffffff))) {
/* Format should be Zip64, as the central directory or file size is too large */
central_pos = unz64local_SearchCentralDir64(&us.z_filefunc, us.filestream, central_pos);
if (central_pos) {
ZPOS64_T uL64;
us.isZip64 = 1;
if (ZSEEK64(us.z_filefunc, us.filestream, central_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = UNZ_ERRNO;
/* the signature, already checked */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
/* size of zip64 end of central directory record */
if (unz64local_getLong64(&us.z_filefunc, us.filestream, &uL64) != UNZ_OK)
err = UNZ_ERRNO;
/* version made by */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
/* version needed to extract */
if (unz64local_getShort(&us.z_filefunc, us.filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
/* number of this disk */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &us.number_disk) != UNZ_OK)
err = UNZ_ERRNO;
/* number of the disk with the start of the central directory */
if (unz64local_getLong(&us.z_filefunc, us.filestream, &us.gi.number_disk_with_CD) != UNZ_OK)
err = UNZ_ERRNO;
/* total number of entries in the central directory on this disk */
if (unz64local_getLong64(&us.z_filefunc, us.filestream, &us.gi.number_entry) != UNZ_OK)
err = UNZ_ERRNO;
/* total number of entries in the central directory */
if (unz64local_getLong64(&us.z_filefunc, us.filestream, &number_entry_CD) != UNZ_OK)
err = UNZ_ERRNO;
if (number_entry_CD != us.gi.number_entry)
err = UNZ_BADZIPFILE;
/* size of the central directory */
if (unz64local_getLong64(&us.z_filefunc, us.filestream, &us.size_central_dir) != UNZ_OK)
err = UNZ_ERRNO;
/* offset of start of central directory with respect to the starting disk number */
if (unz64local_getLong64(&us.z_filefunc, us.filestream, &us.offset_central_dir) != UNZ_OK)
err = UNZ_ERRNO;
} else
err = UNZ_BADZIPFILE;
}
} else
err = UNZ_ERRNO;
if ((err == UNZ_OK) && (central_pos < us.offset_central_dir + us.size_central_dir))
err = UNZ_BADZIPFILE;
if (err != UNZ_OK) {
ZCLOSE64(us.z_filefunc, us.filestream);
return NULL;
}
if (us.gi.number_disk_with_CD == 0) {
/* If there is only one disk open another stream so we don't have to seek between the CD
and the file headers constantly */
filestream = ZOPEN64(us.z_filefunc, path, ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_EXISTING);
if (filestream != NULL)
us.filestream = filestream;
}
/* Hack for zip files that have no respect for zip64
if ((central_pos > 0xffffffff) && (us.offset_central_dir < 0xffffffff))
us.offset_central_dir = central_pos - us.size_central_dir;*/
us.byte_before_the_zipfile = central_pos - (us.offset_central_dir + us.size_central_dir);
us.central_pos = central_pos;
us.pfile_in_zip_read = NULL;
s = (unz64_s *)ALLOC(sizeof(unz64_s));
if (s != NULL) {
*s = us;
unzGoToFirstFile((unzFile)s);
}
return (unzFile)s;
}
extern unzFile ZEXPORT unzOpen2(const char *path, zlib_filefunc_def *pzlib_filefunc32_def)
{
if (pzlib_filefunc32_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
fill_zlib_filefunc64_32_def_from_filefunc32(&zlib_filefunc64_32_def_fill, pzlib_filefunc32_def);
return unzOpenInternal(path, &zlib_filefunc64_32_def_fill);
}
return unzOpenInternal(path, NULL);
}
extern unzFile ZEXPORT unzOpen2_64(const void *path, zlib_filefunc64_def *pzlib_filefunc_def)
{
if (pzlib_filefunc_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
zlib_filefunc64_32_def_fill.zfile_func64 = *pzlib_filefunc_def;
zlib_filefunc64_32_def_fill.ztell32_file = NULL;
zlib_filefunc64_32_def_fill.zseek32_file = NULL;
return unzOpenInternal(path, &zlib_filefunc64_32_def_fill);
}
return unzOpenInternal(path, NULL);
}
extern unzFile ZEXPORT unzOpen(const char *path)
{
return unzOpenInternal(path, NULL);
}
extern unzFile ZEXPORT unzOpen64(const void *path)
{
return unzOpenInternal(path, NULL);
}
extern int ZEXPORT unzClose(unzFile file)
{
unz64_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (s->pfile_in_zip_read != NULL)
unzCloseCurrentFile(file);
if ((s->filestream != NULL) && (s->filestream != s->filestream_with_CD))
ZCLOSE64(s->z_filefunc, s->filestream);
if (s->filestream_with_CD != NULL)
ZCLOSE64(s->z_filefunc, s->filestream_with_CD);
s->filestream = NULL;
s->filestream_with_CD = NULL;
TRYFREE(s);
return UNZ_OK;
}
/* Goto to the next available disk for spanned archives */
local int unzGoToNextDisk OF((unzFile file));
local int unzGoToNextDisk(unzFile file)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
uLong number_disk_next = 0;
s = (unz64_s *)file;
if (s == NULL)
return UNZ_PARAMERROR;
pfile_in_zip_read_info = s->pfile_in_zip_read;
number_disk_next = s->number_disk;
if ((pfile_in_zip_read_info != NULL) && (pfile_in_zip_read_info->rest_read_uncompressed > 0))
/* We are currently reading a file and we need the next sequential disk */
number_disk_next += 1;
else
/* Goto the disk for the current file */
number_disk_next = s->cur_file_info.disk_num_start;
if (number_disk_next != s->number_disk) {
/* Switch disks */
if ((s->filestream != NULL) && (s->filestream != s->filestream_with_CD))
ZCLOSE64(s->z_filefunc, s->filestream);
if (number_disk_next == s->gi.number_disk_with_CD) {
s->filestream = s->filestream_with_CD;
} else {
s->filestream = ZOPENDISK64(s->z_filefunc, s->filestream_with_CD, (unsigned int)number_disk_next,
ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_EXISTING);
}
if (s->filestream == NULL)
return UNZ_ERRNO;
s->number_disk = number_disk_next;
}
return UNZ_OK;
}
extern int ZEXPORT unzGetGlobalInfo(unzFile file, unz_global_info *pglobal_info32)
{
unz64_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
/* to do : check if number_entry is not truncated */
pglobal_info32->number_entry = (uLong)s->gi.number_entry;
pglobal_info32->size_comment = s->gi.size_comment;
pglobal_info32->number_disk_with_CD = s->gi.number_disk_with_CD;
return UNZ_OK;
}
extern int ZEXPORT unzGetGlobalInfo64(unzFile file, unz_global_info64 *pglobal_info)
{
unz64_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
*pglobal_info = s->gi;
return UNZ_OK;
}
extern int ZEXPORT unzGetGlobalComment(unzFile file, char *comment, uLong comment_size)
{
unz64_s *s;
uLong bytes_to_read = comment_size;
if (file == NULL)
return (int)UNZ_PARAMERROR;
s = (unz64_s *)file;
if (bytes_to_read > s->gi.size_comment)
bytes_to_read = s->gi.size_comment;
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, s->central_pos + 22, ZLIB_FILEFUNC_SEEK_SET) != 0)
return UNZ_ERRNO;
if (bytes_to_read > 0) {
*comment = 0;
if (ZREAD64(s->z_filefunc, s->filestream_with_CD, comment, bytes_to_read) != bytes_to_read)
return UNZ_ERRNO;
}
if ((comment != NULL) && (comment_size > s->gi.size_comment))
*(comment + s->gi.size_comment) = 0;
return (int)bytes_to_read;
}
/* Get Info about the current file in the zipfile, with internal only info */
local int unz64local_GetCurrentFileInfoInternal(unzFile file, unz_file_info64 *pfile_info,
unz_file_info64_internal *pfile_info_internal, char *filename, uLong filename_size, void *extrafield,
uLong extrafield_size, char *comment, uLong comment_size)
{
unz64_s *s;
unz_file_info64 file_info;
unz_file_info64_internal file_info_internal;
ZPOS64_T bytes_to_read;
int err = UNZ_OK;
uLong uMagic;
long lSeek = 0;
ZPOS64_T current_pos = 0;
uLong acc = 0;
uLong uL;
ZPOS64_T uL64;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD,
s->pos_in_central_dir + s->byte_before_the_zipfile, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = UNZ_ERRNO;
/* Check the magic */
if (err == UNZ_OK) {
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &uMagic) != UNZ_OK)
err = UNZ_ERRNO;
else if (uMagic != CENTRALHEADERMAGIC)
err = UNZ_BADZIPFILE;
}
/* Read central directory header */
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.version) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.version_needed) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.flag) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.compression_method) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &file_info.dosDate) != UNZ_OK)
err = UNZ_ERRNO;
unz64local_DosDateToTmuDate(file_info.dosDate, &file_info.tmu_date);
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &file_info.crc) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &uL) != UNZ_OK)
err = UNZ_ERRNO;
file_info.compressed_size = uL;
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &uL) != UNZ_OK)
err = UNZ_ERRNO;
file_info.uncompressed_size = uL;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.size_filename) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.size_file_extra) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.size_file_comment) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.disk_num_start) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &file_info.internal_fa) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &file_info.external_fa) != UNZ_OK)
err = UNZ_ERRNO;
/* Relative offset of local header */
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &uL) != UNZ_OK)
err = UNZ_ERRNO;
file_info.size_file_extra_internal = 0;
file_info.disk_offset = uL;
file_info_internal.offset_curfile = uL;
#ifdef HAVE_AES
file_info_internal.aes_compression_method = 0;
file_info_internal.aes_encryption_mode = 0;
file_info_internal.aes_version = 0;
#endif
lSeek += file_info.size_filename;
if ((err == UNZ_OK) && (filename != NULL)) {
if (file_info.size_filename < filename_size) {
*(filename + file_info.size_filename) = 0;
bytes_to_read = file_info.size_filename;
} else
bytes_to_read = filename_size;
if ((file_info.size_filename > 0) && (filename_size > 0))
if (ZREAD64(s->z_filefunc, s->filestream_with_CD, filename, (uLong)bytes_to_read) != bytes_to_read)
err = UNZ_ERRNO;
lSeek -= (uLong)bytes_to_read;
}
/* Read extrafield */
if ((err == UNZ_OK) && (extrafield != NULL)) {
if (file_info.size_file_extra < extrafield_size)
bytes_to_read = file_info.size_file_extra;
else
bytes_to_read = extrafield_size;
if (lSeek != 0) {
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, lSeek, ZLIB_FILEFUNC_SEEK_CUR) == 0)
lSeek = 0;
else
err = UNZ_ERRNO;
}
if ((file_info.size_file_extra > 0) && (extrafield_size > 0))
if (ZREAD64(s->z_filefunc, s->filestream_with_CD, extrafield, (uLong)bytes_to_read) != bytes_to_read)
err = UNZ_ERRNO;
lSeek += file_info.size_file_extra - (uLong)bytes_to_read;
} else
lSeek += file_info.size_file_extra;
if ((err == UNZ_OK) && (file_info.size_file_extra != 0)) {
if (lSeek != 0) {
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, lSeek, ZLIB_FILEFUNC_SEEK_CUR) == 0)
lSeek = 0;
else
err = UNZ_ERRNO;
}
/* We are going to parse the extra field so we need to move back */
current_pos = ZTELL64(s->z_filefunc, s->filestream_with_CD);
if (current_pos < file_info.size_file_extra)
err = UNZ_ERRNO;
current_pos -= file_info.size_file_extra;
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, current_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = UNZ_ERRNO;
while ((err != UNZ_ERRNO) && (acc < file_info.size_file_extra)) {
uLong headerid;
uLong datasize;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &headerid) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &datasize) != UNZ_OK)
err = UNZ_ERRNO;
/* ZIP64 extra fields */
if (headerid == 0x0001) {
/* Subtract size of ZIP64 field, since ZIP64 is handled internally */
file_info.size_file_extra_internal += 2 + 2 + datasize;
if (file_info.uncompressed_size == 0xffffffff) {
if (unz64local_getLong64(&s->z_filefunc, s->filestream_with_CD, &file_info.uncompressed_size) != UNZ_OK)
err = UNZ_ERRNO;
}
if (file_info.compressed_size == 0xffffffff) {
if (unz64local_getLong64(&s->z_filefunc, s->filestream_with_CD, &file_info.compressed_size) != UNZ_OK)
err = UNZ_ERRNO;
}
if (file_info_internal.offset_curfile == 0xffffffff) {
/* Relative Header offset */
if (unz64local_getLong64(&s->z_filefunc, s->filestream_with_CD, &uL64) != UNZ_OK)
err = UNZ_ERRNO;
file_info_internal.offset_curfile = uL64;
file_info.disk_offset = uL64;
}
if (file_info.disk_num_start == 0xffffffff) {
/* Disk Start Number */
if (unz64local_getLong(&s->z_filefunc, s->filestream_with_CD, &file_info.disk_num_start) != UNZ_OK)
err = UNZ_ERRNO;
}
}
#ifdef HAVE_AES
/* AES header */
else if (headerid == 0x9901) {
/* Subtract size of AES field, since AES is handled internally */
file_info.size_file_extra_internal += 2 + 2 + datasize;
/* Verify version info */
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &uL) != UNZ_OK)
err = UNZ_ERRNO;
/* Support AE-1 and AE-2 */
if (uL != 1 && uL != 2)
err = UNZ_ERRNO;
file_info_internal.aes_version = uL;
if (unz64local_getByte(&s->z_filefunc, s->filestream_with_CD, (int *)&uL) != UNZ_OK)
err = UNZ_ERRNO;
if ((char)uL != 'A')
err = UNZ_ERRNO;
if (unz64local_getByte(&s->z_filefunc, s->filestream_with_CD, (int *)&uL) != UNZ_OK)
err = UNZ_ERRNO;
if ((char)uL != 'E')
err = UNZ_ERRNO;
/* Get AES encryption strength and actual compression method */
if (unz64local_getByte(&s->z_filefunc, s->filestream_with_CD, (int *)&uL) != UNZ_OK)
err = UNZ_ERRNO;
file_info_internal.aes_encryption_mode = uL;
if (unz64local_getShort(&s->z_filefunc, s->filestream_with_CD, &uL) != UNZ_OK)
err = UNZ_ERRNO;
file_info_internal.aes_compression_method = uL;
}
#endif
else {
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, datasize, ZLIB_FILEFUNC_SEEK_CUR) != 0)
err = UNZ_ERRNO;
}
acc += 2 + 2 + datasize;
}
}
if (file_info.disk_num_start == s->gi.number_disk_with_CD)
file_info_internal.byte_before_the_zipfile = s->byte_before_the_zipfile;
else
file_info_internal.byte_before_the_zipfile = 0;
if ((err == UNZ_OK) && (comment != NULL)) {
if (file_info.size_file_comment < comment_size) {
*(comment + file_info.size_file_comment) = 0;
bytes_to_read = file_info.size_file_comment;
} else
bytes_to_read = comment_size;
if (lSeek != 0) {
if (ZSEEK64(s->z_filefunc, s->filestream_with_CD, lSeek, ZLIB_FILEFUNC_SEEK_CUR) != 0)
err = UNZ_ERRNO;
}
if ((file_info.size_file_comment > 0) && (comment_size > 0))
if (ZREAD64(s->z_filefunc, s->filestream_with_CD, comment, (uLong)bytes_to_read) != bytes_to_read)
err = UNZ_ERRNO;
lSeek += file_info.size_file_comment - (uLong)bytes_to_read;
} else
lSeek += file_info.size_file_comment;
if ((err == UNZ_OK) && (pfile_info != NULL))
*pfile_info = file_info;
if ((err == UNZ_OK) && (pfile_info_internal != NULL))
*pfile_info_internal = file_info_internal;
return err;
}
extern int ZEXPORT unzGetCurrentFileInfo(unzFile file, unz_file_info *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size)
{
unz_file_info64 file_info64;
int err;
err = unz64local_GetCurrentFileInfoInternal(file, &file_info64, NULL, filename, filename_size,
extrafield, extrafield_size, comment, comment_size);
if ((err == UNZ_OK) && (pfile_info != NULL)) {
pfile_info->version = file_info64.version;
pfile_info->version_needed = file_info64.version_needed;
pfile_info->flag = file_info64.flag;
pfile_info->compression_method = file_info64.compression_method;
pfile_info->dosDate = file_info64.dosDate;
pfile_info->crc = file_info64.crc;
pfile_info->size_filename = file_info64.size_filename;
pfile_info->size_file_extra = file_info64.size_file_extra - file_info64.size_file_extra_internal;
pfile_info->size_file_comment = file_info64.size_file_comment;
pfile_info->disk_num_start = file_info64.disk_num_start;
pfile_info->internal_fa = file_info64.internal_fa;
pfile_info->external_fa = file_info64.external_fa;
pfile_info->tmu_date = file_info64.tmu_date,
pfile_info->compressed_size = (uLong)file_info64.compressed_size;
pfile_info->uncompressed_size = (uLong)file_info64.uncompressed_size;
}
return err;
}
extern int ZEXPORT unzGetCurrentFileInfo64(unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size)
{
return unz64local_GetCurrentFileInfoInternal(file, pfile_info, NULL, filename, filename_size,
extrafield, extrafield_size, comment, comment_size);
}
/* Read the local header of the current zipfile. Check the coherency of the local header and info in the
end of central directory about this file store in *piSizeVar the size of extra info in local header
(filename and size of extra field data) */
local int unz64local_CheckCurrentFileCoherencyHeader(unz64_s *s, uInt *piSizeVar, ZPOS64_T *poffset_local_extrafield,
uInt *psize_local_extrafield)
{
uLong uMagic, uL, uFlags;
uLong size_filename;
uLong size_extra_field;
int err = UNZ_OK;
int compression_method = 0;
*piSizeVar = 0;
*poffset_local_extrafield = 0;
*psize_local_extrafield = 0;
err = unzGoToNextDisk((unzFile)s);
if (err != UNZ_OK)
return err;
if (ZSEEK64(s->z_filefunc, s->filestream, s->cur_file_info_internal.offset_curfile +
s->cur_file_info_internal.byte_before_the_zipfile, ZLIB_FILEFUNC_SEEK_SET) != 0)
return UNZ_ERRNO;
if (err == UNZ_OK) {
if (unz64local_getLong(&s->z_filefunc, s->filestream, &uMagic) != UNZ_OK)
err = UNZ_ERRNO;
else if (uMagic != LOCALHEADERMAGIC)
err = UNZ_BADZIPFILE;
}
if (unz64local_getShort(&s->z_filefunc, s->filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream, &uFlags) != UNZ_OK)
err = UNZ_ERRNO;
if (unz64local_getShort(&s->z_filefunc, s->filestream, &uL) != UNZ_OK)
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uL != s->cur_file_info.compression_method))
err = UNZ_BADZIPFILE;
compression_method = (int)s->cur_file_info.compression_method;
#ifdef HAVE_AES
if (compression_method == AES_METHOD)
compression_method = (int)s->cur_file_info_internal.aes_compression_method;
#endif
if ((err == UNZ_OK) && (compression_method != 0) &&
#ifdef HAVE_BZIP2
(compression_method != Z_BZIP2ED) &&
#endif
(compression_method != Z_DEFLATED))
err = UNZ_BADZIPFILE;
if (unz64local_getLong(&s->z_filefunc, s->filestream, &uL) != UNZ_OK) /* date/time */
err = UNZ_ERRNO;
if (unz64local_getLong(&s->z_filefunc, s->filestream, &uL) != UNZ_OK) /* crc */
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (uL != s->cur_file_info.crc) && ((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unz64local_getLong(&s->z_filefunc, s->filestream, &uL) != UNZ_OK) /* size compr */
err = UNZ_ERRNO;
else if ((uL != 0xffffffff) && (err == UNZ_OK) && (uL != s->cur_file_info.compressed_size) && ((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unz64local_getLong(&s->z_filefunc, s->filestream, &uL) != UNZ_OK) /* size uncompr */
err = UNZ_ERRNO;
else if ((uL != 0xffffffff) && (err == UNZ_OK) && (uL != s->cur_file_info.uncompressed_size) && ((uFlags & 8) == 0))
err = UNZ_BADZIPFILE;
if (unz64local_getShort(&s->z_filefunc, s->filestream, &size_filename) != UNZ_OK)
err = UNZ_ERRNO;
else if ((err == UNZ_OK) && (size_filename != s->cur_file_info.size_filename))
err = UNZ_BADZIPFILE;
*piSizeVar += (uInt)size_filename;
if (unz64local_getShort(&s->z_filefunc, s->filestream, &size_extra_field) != UNZ_OK)
err = UNZ_ERRNO;
*poffset_local_extrafield = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + size_filename;
*psize_local_extrafield = (uInt)size_extra_field;
*piSizeVar += (uInt)size_extra_field;
return err;
}
/*
Open for reading data the current file in the zipfile.
If there is no error and the file is opened, the return value is UNZ_OK.
*/
extern int ZEXPORT unzOpenCurrentFile3(unzFile file, int *method, int *level, int raw, const char *password)
{
int err = UNZ_OK;
int compression_method;
uInt iSizeVar;
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
ZPOS64_T offset_local_extrafield;
uInt size_local_extrafield;
#ifndef NOUNCRYPT
char source[12];
#else
if (password != NULL)
return UNZ_PARAMERROR;
#endif
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (!s->current_file_ok)
return UNZ_PARAMERROR;
if (s->pfile_in_zip_read != NULL)
unzCloseCurrentFile(file);
if (unz64local_CheckCurrentFileCoherencyHeader(s, &iSizeVar, &offset_local_extrafield, &size_local_extrafield) != UNZ_OK)
return UNZ_BADZIPFILE;
pfile_in_zip_read_info = (file_in_zip64_read_info_s *)ALLOC(sizeof(file_in_zip64_read_info_s));
if (pfile_in_zip_read_info == NULL)
return UNZ_INTERNALERROR;
pfile_in_zip_read_info->read_buffer = (Bytef *)ALLOC(UNZ_BUFSIZE);
pfile_in_zip_read_info->offset_local_extrafield = offset_local_extrafield;
pfile_in_zip_read_info->size_local_extrafield = size_local_extrafield;
pfile_in_zip_read_info->pos_local_extrafield = 0;
pfile_in_zip_read_info->raw = raw;
if (pfile_in_zip_read_info->read_buffer == NULL) {
TRYFREE(pfile_in_zip_read_info);
return UNZ_INTERNALERROR;
}
pfile_in_zip_read_info->stream_initialised = 0;
compression_method = (int)s->cur_file_info.compression_method;
#ifdef HAVE_AES
if (compression_method == AES_METHOD)
compression_method = (int)s->cur_file_info_internal.aes_compression_method;
#endif
if (method != NULL)
*method = compression_method;
if (level != NULL) {
*level = 6;
switch (s->cur_file_info.flag & 0x06) {
case 6: *level = 1; break;
case 4: *level = 2; break;
case 2: *level = 9; break;
}
}
if ((compression_method != 0) &&
#ifdef HAVE_BZIP2
(compression_method != Z_BZIP2ED) &&
#endif
(compression_method != Z_DEFLATED))
err = UNZ_BADZIPFILE;
pfile_in_zip_read_info->crc32_wait = s->cur_file_info.crc;
pfile_in_zip_read_info->crc32 = 0;
pfile_in_zip_read_info->total_out_64 = 0;
pfile_in_zip_read_info->compression_method = compression_method;
pfile_in_zip_read_info->filestream = s->filestream;
pfile_in_zip_read_info->z_filefunc = s->z_filefunc;
if (s->number_disk == s->gi.number_disk_with_CD)
pfile_in_zip_read_info->byte_before_the_zipfile = s->byte_before_the_zipfile;
else
pfile_in_zip_read_info->byte_before_the_zipfile = 0;
pfile_in_zip_read_info->stream.total_out = 0;
pfile_in_zip_read_info->stream.total_in = 0;
pfile_in_zip_read_info->stream.next_in = NULL;
if (!raw) {
if (compression_method == Z_BZIP2ED) {
#ifdef HAVE_BZIP2
pfile_in_zip_read_info->bstream.bzalloc = (void *(*)(void *, int, int)) 0;
pfile_in_zip_read_info->bstream.bzfree = (free_func)0;
pfile_in_zip_read_info->bstream.opaque = (voidpf)0;
pfile_in_zip_read_info->bstream.state = (voidpf)0;
pfile_in_zip_read_info->stream.zalloc = (alloc_func)0;
pfile_in_zip_read_info->stream.zfree = (free_func)0;
pfile_in_zip_read_info->stream.opaque = (voidpf)0;
pfile_in_zip_read_info->stream.next_in = (voidpf)0;
pfile_in_zip_read_info->stream.avail_in = 0;
err = BZ2_bzDecompressInit(&pfile_in_zip_read_info->bstream, 0, 0);
if (err == Z_OK)
pfile_in_zip_read_info->stream_initialised = Z_BZIP2ED;
else {
TRYFREE(pfile_in_zip_read_info);
return err;
}
#else
pfile_in_zip_read_info->raw = 1;
#endif
} else if (compression_method == Z_DEFLATED) {
pfile_in_zip_read_info->stream.zalloc = (alloc_func)0;
pfile_in_zip_read_info->stream.zfree = (free_func)0;
pfile_in_zip_read_info->stream.opaque = (voidpf)s;
pfile_in_zip_read_info->stream.next_in = 0;
pfile_in_zip_read_info->stream.avail_in = 0;
err = inflateInit2(&pfile_in_zip_read_info->stream, -MAX_WBITS);
if (err == Z_OK)
pfile_in_zip_read_info->stream_initialised = Z_DEFLATED;
else {
TRYFREE(pfile_in_zip_read_info);
return err;
}
/* windowBits is passed < 0 to tell that there is no zlib header.
* Note that in this case inflate *requires* an extra "dummy" byte
* after the compressed stream in order to complete decompression and
* return Z_STREAM_END.
* In unzip, i don't wait absolutely Z_STREAM_END because I known the
* size of both compressed and uncompressed data
*/
}
}
pfile_in_zip_read_info->rest_read_compressed = s->cur_file_info.compressed_size;
pfile_in_zip_read_info->rest_read_uncompressed = s->cur_file_info.uncompressed_size;
pfile_in_zip_read_info->pos_in_zipfile = s->cur_file_info_internal.offset_curfile + SIZEZIPLOCALHEADER + iSizeVar;
pfile_in_zip_read_info->stream.avail_in = (uInt)0;
s->pfile_in_zip_read = pfile_in_zip_read_info;
#ifndef NOUNCRYPT
if ((password != NULL) && ((s->cur_file_info.flag & 1) != 0)) {
if (ZSEEK64(s->z_filefunc, s->filestream,
s->pfile_in_zip_read->pos_in_zipfile + s->pfile_in_zip_read->byte_before_the_zipfile,
ZLIB_FILEFUNC_SEEK_SET) != 0)
return UNZ_INTERNALERROR;
#ifdef HAVE_AES
if (s->cur_file_info.compression_method == AES_METHOD) {
unsigned char passverify[AES_PWVERIFYSIZE];
unsigned char saltvalue[AES_MAXSALTLENGTH];
uInt saltlength;
if ((s->cur_file_info_internal.aes_encryption_mode < 1) ||
(s->cur_file_info_internal.aes_encryption_mode > 3))
return UNZ_INTERNALERROR;
saltlength = SALT_LENGTH(s->cur_file_info_internal.aes_encryption_mode);
if (ZREAD64(s->z_filefunc, s->filestream, saltvalue, saltlength) != saltlength)
return UNZ_INTERNALERROR;
if (ZREAD64(s->z_filefunc, s->filestream, passverify, AES_PWVERIFYSIZE) != AES_PWVERIFYSIZE)
return UNZ_INTERNALERROR;
fcrypt_init((int)s->cur_file_info_internal.aes_encryption_mode, (unsigned char *)password, (unsigned int)strlen(password), saltvalue,
passverify, &s->pfile_in_zip_read->aes_ctx);
pfile_in_zip_read_info->rest_read_compressed -= saltlength + AES_PWVERIFYSIZE;
pfile_in_zip_read_info->rest_read_compressed -= AES_AUTHCODESIZE;
s->pfile_in_zip_read->pos_in_zipfile += saltlength + AES_PWVERIFYSIZE;
} else
#endif
{
int i;
s->pcrc_32_tab = (const unsigned long *)get_crc_table();
init_keys(password, s->keys, s->pcrc_32_tab);
if (ZREAD64(s->z_filefunc, s->filestream, source, 12) < 12)
return UNZ_INTERNALERROR;
for (i = 0; i < 12; i++)
zdecode(s->keys, s->pcrc_32_tab, source[i]);
pfile_in_zip_read_info->rest_read_compressed -= 12;
s->pfile_in_zip_read->pos_in_zipfile += 12;
}
}
#endif
return UNZ_OK;
}
extern int ZEXPORT unzOpenCurrentFile(unzFile file)
{
return unzOpenCurrentFile3(file, NULL, NULL, 0, NULL);
}
extern int ZEXPORT unzOpenCurrentFilePassword(unzFile file, const char *password)
{
return unzOpenCurrentFile3(file, NULL, NULL, 0, password);
}
extern int ZEXPORT unzOpenCurrentFile2(unzFile file, int *method, int *level, int raw)
{
return unzOpenCurrentFile3(file, method, level, raw, NULL);
}
/* Read bytes from the current file.
buf contain buffer where data must be copied
len the size of buf.
return the number of byte copied if some bytes are copied
return 0 if the end of file was reached
return <0 with error code if there is an error (UNZ_ERRNO for IO error, or zLib error for uncompress error) */
extern int ZEXPORT unzReadCurrentFile(unzFile file, voidp buf, unsigned len)
{
int err = UNZ_OK;
uInt read = 0;
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
if (pfile_in_zip_read_info->read_buffer == NULL)
return UNZ_END_OF_LIST_OF_FILE;
if (len == 0)
return 0;
pfile_in_zip_read_info->stream.next_out = (Bytef *)buf;
pfile_in_zip_read_info->stream.avail_out = (uInt)len;
if (pfile_in_zip_read_info->raw) {
if (len > pfile_in_zip_read_info->rest_read_compressed + pfile_in_zip_read_info->stream.avail_in)
pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_compressed +
pfile_in_zip_read_info->stream.avail_in;
} else {
// NOTE:
// This bit of code seems to try to set the amount of space in the output buffer based on the
// value stored in the headers stored in the .zip file. However, if those values are incorrect
// it may result in a loss of data when uncompresssing that file. The compressed data is still
// legit and will deflate without knowing the uncompressed code so this tidbit is unnecessary and
// may cause issues for some .zip files.
//
// It's removed in here to fix those issues.
//
// See: https://github.com/ZipArchive/ziparchive/issues/16
//
/*
FIXME: Upgrading to minizip 1.1 caused issues here, Uncommented the code that was commented before. 11/24/2015
*/
if (len > pfile_in_zip_read_info->rest_read_uncompressed)
pfile_in_zip_read_info->stream.avail_out = (uInt)pfile_in_zip_read_info->rest_read_uncompressed;
}
while (pfile_in_zip_read_info->stream.avail_out > 0) {
if (pfile_in_zip_read_info->stream.avail_in == 0) {
uInt bytes_to_read = UNZ_BUFSIZE;
uInt bytes_not_read = 0;
uInt bytes_read = 0;
uInt total_bytes_read = 0;
if (pfile_in_zip_read_info->stream.next_in != NULL)
bytes_not_read = (uInt)(pfile_in_zip_read_info->read_buffer + UNZ_BUFSIZE -
pfile_in_zip_read_info->stream.next_in);
bytes_to_read -= bytes_not_read;
if (bytes_not_read > 0)
memcpy(pfile_in_zip_read_info->read_buffer, pfile_in_zip_read_info->stream.next_in, bytes_not_read);
if (pfile_in_zip_read_info->rest_read_compressed < bytes_to_read)
bytes_to_read = (uInt)pfile_in_zip_read_info->rest_read_compressed;
while (total_bytes_read != bytes_to_read) {
if (ZSEEK64(pfile_in_zip_read_info->z_filefunc, pfile_in_zip_read_info->filestream,
pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile,
ZLIB_FILEFUNC_SEEK_SET) != 0)
return UNZ_ERRNO;
bytes_read = (int)ZREAD64(pfile_in_zip_read_info->z_filefunc, pfile_in_zip_read_info->filestream,
pfile_in_zip_read_info->read_buffer + bytes_not_read + total_bytes_read,
bytes_to_read - total_bytes_read);
total_bytes_read += bytes_read;
pfile_in_zip_read_info->pos_in_zipfile += bytes_read;
if (bytes_read == 0) {
if (ZERROR64(pfile_in_zip_read_info->z_filefunc, pfile_in_zip_read_info->filestream))
return UNZ_ERRNO;
err = unzGoToNextDisk(file);
if (err != UNZ_OK)
return err;
pfile_in_zip_read_info->pos_in_zipfile = 0;
pfile_in_zip_read_info->filestream = s->filestream;
}
}
#ifndef NOUNCRYPT
if ((s->cur_file_info.flag & 1) != 0) {
#ifdef HAVE_AES
if (s->cur_file_info.compression_method == AES_METHOD) {
fcrypt_decrypt(pfile_in_zip_read_info->read_buffer, bytes_to_read, &s->pfile_in_zip_read->aes_ctx);
} else
#endif
{
uInt i;
for (i = 0; i < total_bytes_read; i++)
pfile_in_zip_read_info->read_buffer[i] =
zdecode(s->keys, s->pcrc_32_tab, pfile_in_zip_read_info->read_buffer[i]);
}
}
#endif
pfile_in_zip_read_info->rest_read_compressed -= total_bytes_read;
pfile_in_zip_read_info->stream.next_in = (Bytef *)pfile_in_zip_read_info->read_buffer;
pfile_in_zip_read_info->stream.avail_in = (uInt)bytes_not_read + total_bytes_read;
}
if ((pfile_in_zip_read_info->compression_method == 0) || (pfile_in_zip_read_info->raw)) {
uInt copy, i;
if ((pfile_in_zip_read_info->stream.avail_in == 0) &&
(pfile_in_zip_read_info->rest_read_compressed == 0))
return (read == 0) ? UNZ_EOF : read;
if (pfile_in_zip_read_info->stream.avail_out < pfile_in_zip_read_info->stream.avail_in)
copy = pfile_in_zip_read_info->stream.avail_out;
else
copy = pfile_in_zip_read_info->stream.avail_in;
for (i = 0; i < copy; i++)
*(pfile_in_zip_read_info->stream.next_out + i) =
*(pfile_in_zip_read_info->stream.next_in + i);
pfile_in_zip_read_info->total_out_64 = pfile_in_zip_read_info->total_out_64 + copy;
pfile_in_zip_read_info->rest_read_uncompressed -= copy;
pfile_in_zip_read_info->crc32 = crc32(pfile_in_zip_read_info->crc32,
pfile_in_zip_read_info->stream.next_out, copy);
pfile_in_zip_read_info->stream.avail_in -= copy;
pfile_in_zip_read_info->stream.avail_out -= copy;
pfile_in_zip_read_info->stream.next_out += copy;
pfile_in_zip_read_info->stream.next_in += copy;
pfile_in_zip_read_info->stream.total_out += copy;
read += copy;
} else if (pfile_in_zip_read_info->compression_method == Z_BZIP2ED) {
#ifdef HAVE_BZIP2
uLong total_out_before, total_out_after;
const Bytef *buf_before;
uLong out_bytes;
pfile_in_zip_read_info->bstream.next_in = (char *)pfile_in_zip_read_info->stream.next_in;
pfile_in_zip_read_info->bstream.avail_in = pfile_in_zip_read_info->stream.avail_in;
pfile_in_zip_read_info->bstream.total_in_lo32 = pfile_in_zip_read_info->stream.total_in;
pfile_in_zip_read_info->bstream.total_in_hi32 = 0;
pfile_in_zip_read_info->bstream.next_out = (char *)pfile_in_zip_read_info->stream.next_out;
pfile_in_zip_read_info->bstream.avail_out = pfile_in_zip_read_info->stream.avail_out;
pfile_in_zip_read_info->bstream.total_out_lo32 = pfile_in_zip_read_info->stream.total_out;
pfile_in_zip_read_info->bstream.total_out_hi32 = 0;
total_out_before = pfile_in_zip_read_info->bstream.total_out_lo32;
buf_before = (const Bytef *)pfile_in_zip_read_info->bstream.next_out;
err = BZ2_bzDecompress(&pfile_in_zip_read_info->bstream);
total_out_after = pfile_in_zip_read_info->bstream.total_out_lo32;
out_bytes = total_out_after - total_out_before;
pfile_in_zip_read_info->total_out_64 = pfile_in_zip_read_info->total_out_64 + out_bytes;
pfile_in_zip_read_info->rest_read_uncompressed -= out_bytes;
pfile_in_zip_read_info->crc32 = crc32(pfile_in_zip_read_info->crc32, buf_before, (uInt)(out_bytes));
read += (uInt)(total_out_after - total_out_before);
pfile_in_zip_read_info->stream.next_in = (Bytef *)pfile_in_zip_read_info->bstream.next_in;
pfile_in_zip_read_info->stream.avail_in = pfile_in_zip_read_info->bstream.avail_in;
pfile_in_zip_read_info->stream.total_in = pfile_in_zip_read_info->bstream.total_in_lo32;
pfile_in_zip_read_info->stream.next_out = (Bytef *)pfile_in_zip_read_info->bstream.next_out;
pfile_in_zip_read_info->stream.avail_out = pfile_in_zip_read_info->bstream.avail_out;
pfile_in_zip_read_info->stream.total_out = pfile_in_zip_read_info->bstream.total_out_lo32;
if (err == BZ_STREAM_END)
return (read == 0) ? UNZ_EOF : read;
if (err != BZ_OK)
break;
#endif
} else {
ZPOS64_T total_out_before, total_out_after;
const Bytef *buf_before;
ZPOS64_T out_bytes;
int flush = Z_SYNC_FLUSH;
total_out_before = pfile_in_zip_read_info->stream.total_out;
buf_before = pfile_in_zip_read_info->stream.next_out;
/*
if ((pfile_in_zip_read_info->rest_read_uncompressed ==
pfile_in_zip_read_info->stream.avail_out) &&
(pfile_in_zip_read_info->rest_read_compressed == 0))
flush = Z_FINISH;
*/
err = inflate(&pfile_in_zip_read_info->stream, flush);
if ((err >= 0) && (pfile_in_zip_read_info->stream.msg != NULL))
err = Z_DATA_ERROR;
total_out_after = pfile_in_zip_read_info->stream.total_out;
out_bytes = total_out_after - total_out_before;
pfile_in_zip_read_info->total_out_64 += out_bytes;
pfile_in_zip_read_info->rest_read_uncompressed -= out_bytes;
pfile_in_zip_read_info->crc32 =
crc32(pfile_in_zip_read_info->crc32, buf_before, (uInt)(out_bytes));
read += (uInt)(total_out_after - total_out_before);
if (err == Z_STREAM_END)
return (read == 0) ? UNZ_EOF : read;
if (err != Z_OK)
break;
}
}
if (err == Z_OK)
return read;
return err;
}
extern ZPOS64_T ZEXPORT unzGetCurrentFileZStreamPos64(unzFile file)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
s = (unz64_s *)file;
if (file == NULL)
return 0; /* UNZ_PARAMERROR */
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return 0; /* UNZ_PARAMERROR */
return pfile_in_zip_read_info->pos_in_zipfile + pfile_in_zip_read_info->byte_before_the_zipfile;
}
extern int ZEXPORT unzGetLocalExtrafield(unzFile file, voidp buf, unsigned len)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
uInt read_now;
ZPOS64_T size_to_read;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
size_to_read = pfile_in_zip_read_info->size_local_extrafield - pfile_in_zip_read_info->pos_local_extrafield;
if (buf == NULL)
return (int)size_to_read;
if (len > size_to_read)
read_now = (uInt)size_to_read;
else
read_now = (uInt)len;
if (read_now == 0)
return 0;
if (ZSEEK64(pfile_in_zip_read_info->z_filefunc, pfile_in_zip_read_info->filestream,
pfile_in_zip_read_info->offset_local_extrafield + pfile_in_zip_read_info->pos_local_extrafield,
ZLIB_FILEFUNC_SEEK_SET) != 0)
return UNZ_ERRNO;
if (ZREAD64(pfile_in_zip_read_info->z_filefunc, pfile_in_zip_read_info->filestream, buf, read_now) != read_now)
return UNZ_ERRNO;
return (int)read_now;
}
extern int ZEXPORT unzCloseCurrentFile(unzFile file)
{
int err = UNZ_OK;
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
#ifdef HAVE_AES
if (s->cur_file_info.compression_method == AES_METHOD) {
unsigned char authcode[AES_AUTHCODESIZE];
unsigned char rauthcode[AES_AUTHCODESIZE];
if (ZREAD64(s->z_filefunc, s->filestream, authcode, AES_AUTHCODESIZE) != AES_AUTHCODESIZE)
return UNZ_ERRNO;
if (fcrypt_end(rauthcode, &s->pfile_in_zip_read->aes_ctx) != AES_AUTHCODESIZE)
err = UNZ_CRCERROR;
if (memcmp(authcode, rauthcode, AES_AUTHCODESIZE) != 0)
err = UNZ_CRCERROR;
}
/* AES zip version AE-1 will expect a valid crc as well */
if ((s->cur_file_info.compression_method != AES_METHOD) ||
(s->cur_file_info_internal.aes_version == 0x0001))
#endif
{
if ((pfile_in_zip_read_info->rest_read_uncompressed == 0) &&
(!pfile_in_zip_read_info->raw)) {
if (pfile_in_zip_read_info->crc32 != pfile_in_zip_read_info->crc32_wait)
err = UNZ_CRCERROR;
}
}
TRYFREE(pfile_in_zip_read_info->read_buffer);
pfile_in_zip_read_info->read_buffer = NULL;
if (pfile_in_zip_read_info->stream_initialised == Z_DEFLATED)
inflateEnd(&pfile_in_zip_read_info->stream);
#ifdef HAVE_BZIP2
else if (pfile_in_zip_read_info->stream_initialised == Z_BZIP2ED)
BZ2_bzDecompressEnd(&pfile_in_zip_read_info->bstream);
#endif
pfile_in_zip_read_info->stream_initialised = 0;
TRYFREE(pfile_in_zip_read_info);
s->pfile_in_zip_read = NULL;
return err;
}
extern int ZEXPORT unzGoToFirstFile2(unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size)
{
int err = UNZ_OK;
unz64_s *s;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
s->pos_in_central_dir = s->offset_central_dir;
s->num_file = 0;
err = unz64local_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal,
filename, filename_size, extrafield, extrafield_size, comment, comment_size);
s->current_file_ok = (err == UNZ_OK);
if ((err == UNZ_OK) && (pfile_info != NULL))
memcpy(pfile_info, &s->cur_file_info, sizeof(unz_file_info64));
return err;
}
extern int ZEXPORT unzGoToFirstFile(unzFile file)
{
return unzGoToFirstFile2(file, NULL, NULL, 0, NULL, 0, NULL, 0);
}
extern int ZEXPORT unzGoToNextFile2(unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size)
{
unz64_s *s;
int err;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (!s->current_file_ok)
return UNZ_END_OF_LIST_OF_FILE;
if (s->gi.number_entry != 0xffff) /* 2^16 files overflow hack */
if (s->num_file + 1 == s->gi.number_entry)
return UNZ_END_OF_LIST_OF_FILE;
s->pos_in_central_dir += SIZECENTRALDIRITEM + s->cur_file_info.size_filename +
s->cur_file_info.size_file_extra + s->cur_file_info.size_file_comment;
s->num_file++;
err = unz64local_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal,
filename, filename_size, extrafield, extrafield_size, comment, comment_size);
s->current_file_ok = (err == UNZ_OK);
if ((err == UNZ_OK) && (pfile_info != NULL))
memcpy(pfile_info, &s->cur_file_info, sizeof(unz_file_info64));
return err;
}
extern int ZEXPORT unzGoToNextFile(unzFile file)
{
return unzGoToNextFile2(file, NULL, NULL, 0, NULL, 0, NULL, 0);
}
extern int ZEXPORT unzLocateFile(unzFile file, const char *filename, unzFileNameComparer filename_compare_func)
{
unz64_s *s;
int err;
unz_file_info64 cur_file_info_saved;
unz_file_info64_internal cur_file_info_internal_saved;
ZPOS64_T num_file_saved;
ZPOS64_T pos_in_central_dir_saved;
char current_filename[UNZ_MAXFILENAMEINZIP + 1];
if (file == NULL)
return UNZ_PARAMERROR;
if (strlen(filename) >= UNZ_MAXFILENAMEINZIP)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (!s->current_file_ok)
return UNZ_END_OF_LIST_OF_FILE;
/* Save the current state */
num_file_saved = s->num_file;
pos_in_central_dir_saved = s->pos_in_central_dir;
cur_file_info_saved = s->cur_file_info;
cur_file_info_internal_saved = s->cur_file_info_internal;
err = unzGoToFirstFile2(file, NULL, current_filename, sizeof(current_filename) - 1, NULL, 0, NULL, 0);
while (err == UNZ_OK) {
if (filename_compare_func != NULL)
err = filename_compare_func(file, current_filename, filename);
else
err = strcmp(current_filename, filename);
if (err == 0)
return UNZ_OK;
err = unzGoToNextFile2(file, NULL, current_filename, sizeof(current_filename) - 1, NULL, 0, NULL, 0);
}
/* We failed, so restore the state of the 'current file' to where we were. */
s->num_file = num_file_saved;
s->pos_in_central_dir = pos_in_central_dir_saved;
s->cur_file_info = cur_file_info_saved;
s->cur_file_info_internal = cur_file_info_internal_saved;
return err;
}
extern int ZEXPORT unzGetFilePos(unzFile file, unz_file_pos *file_pos)
{
unz64_file_pos file_pos64;
int err = unzGetFilePos64(file, &file_pos64);
if (err == UNZ_OK) {
file_pos->pos_in_zip_directory = (uLong)file_pos64.pos_in_zip_directory;
file_pos->num_of_file = (uLong)file_pos64.num_of_file;
}
return err;
}
extern int ZEXPORT unzGoToFilePos(unzFile file, unz_file_pos *file_pos)
{
unz64_file_pos file_pos64;
if (file_pos == NULL)
return UNZ_PARAMERROR;
file_pos64.pos_in_zip_directory = file_pos->pos_in_zip_directory;
file_pos64.num_of_file = file_pos->num_of_file;
return unzGoToFilePos64(file, &file_pos64);
}
extern int ZEXPORT unzGetFilePos64(unzFile file, unz64_file_pos *file_pos)
{
unz64_s *s;
if (file == NULL || file_pos == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
if (!s->current_file_ok)
return UNZ_END_OF_LIST_OF_FILE;
file_pos->pos_in_zip_directory = s->pos_in_central_dir;
file_pos->num_of_file = s->num_file;
return UNZ_OK;
}
extern int ZEXPORT unzGoToFilePos64(unzFile file, const unz64_file_pos *file_pos)
{
unz64_s *s;
int err;
if (file == NULL || file_pos == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
/* jump to the right spot */
s->pos_in_central_dir = file_pos->pos_in_zip_directory;
s->num_file = file_pos->num_of_file;
/* set the current file */
err = unz64local_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal, NULL, 0, NULL, 0, NULL, 0);
/* return results */
s->current_file_ok = (err == UNZ_OK);
return err;
}
extern uLong ZEXPORT unzGetOffset(unzFile file)
{
ZPOS64_T offset64;
if (file == NULL)
return 0; /* UNZ_PARAMERROR; */
offset64 = unzGetOffset64(file);
return (uLong)offset64;
}
extern ZPOS64_T ZEXPORT unzGetOffset64(unzFile file)
{
unz64_s *s;
if (file == NULL)
return 0; /* UNZ_PARAMERROR; */
s = (unz64_s *)file;
if (!s->current_file_ok)
return 0;
if (s->gi.number_entry != 0 && s->gi.number_entry != 0xffff)
if (s->num_file == s->gi.number_entry)
return 0;
return s->pos_in_central_dir;
}
extern int ZEXPORT unzSetOffset(unzFile file, uLong pos)
{
return unzSetOffset64(file, pos);
}
extern int ZEXPORT unzSetOffset64(unzFile file, ZPOS64_T pos)
{
unz64_s *s;
int err;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
s->pos_in_central_dir = pos;
s->num_file = s->gi.number_entry; /* hack */
err = unz64local_GetCurrentFileInfoInternal(file, &s->cur_file_info, &s->cur_file_info_internal, NULL, 0, NULL, 0, NULL, 0);
s->current_file_ok = (err == UNZ_OK);
return err;
}
extern z_off_t ZEXPORT unztell(unzFile file)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
return (z_off_t)pfile_in_zip_read_info->stream.total_out;
}
extern ZPOS64_T ZEXPORT unztell64(unzFile file)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return (ZPOS64_T)-1;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return (ZPOS64_T)-1;
return pfile_in_zip_read_info->total_out_64;
}
extern int ZEXPORT unzeof(unzFile file)
{
unz64_s *s;
file_in_zip64_read_info_s *pfile_in_zip_read_info;
if (file == NULL)
return UNZ_PARAMERROR;
s = (unz64_s *)file;
pfile_in_zip_read_info = s->pfile_in_zip_read;
if (pfile_in_zip_read_info == NULL)
return UNZ_PARAMERROR;
if (pfile_in_zip_read_info->rest_read_uncompressed == 0)
return 1;
return 0;
}
/* unzip.h -- IO for uncompress .zip files using zlib
Version 1.1, February 14h, 2010
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications of Unzip for Zip64
Copyright (C) 2007-2008 Even Rouault
Modifications for Zip64 support on both zip and unzip
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#include "common.h"
#ifndef _UNZ_H
#define _UNZ_H
#define HAVE_AES
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ZLIB_H
#include "zlib.h"
#endif
#ifndef _ZLIBIOAPI_H
#include "ioapi.h"
#endif
#ifdef HAVE_BZIP2
#include "bzlib.h"
#endif
#define Z_BZIP2ED 12
#if defined(STRICTUNZIP) || defined(STRICTZIPUNZIP)
/* like the STRICT of WIN32, we define a pointer that cannot be converted
from (void*) without cast */
typedef struct TagunzFile__ { int unused; } unzFile__;
typedef unzFile__ *unzFile;
#else
typedef voidp unzFile;
#endif
#define UNZ_OK (0)
#define UNZ_END_OF_LIST_OF_FILE (-100)
#define UNZ_ERRNO (Z_ERRNO)
#define UNZ_EOF (0)
#define UNZ_PARAMERROR (-102)
#define UNZ_BADZIPFILE (-103)
#define UNZ_INTERNALERROR (-104)
#define UNZ_CRCERROR (-105)
/***************************************************************************/
/* Opening and close a zip file */
extern unzFile ZEXPORT unzOpen OF((const char *path));
extern unzFile ZEXPORT unzOpen64 OF((const void *path));
/* Open a Zip file.
path should contain the full pathname (by example, on a Windows XP computer
"c:\\zlib\\zlib113.zip" or on an Unix computer "zlib/zlib113.zip".
return NULL if zipfile cannot be opened or doesn't exist
return unzFile handle if no error
NOTE: The "64" function take a const void* pointer, because the path is just the value passed to the
open64_file_func callback. Under Windows, if UNICODE is defined, using fill_fopen64_filefunc, the path
is a pointer to a wide unicode string (LPCTSTR is LPCWSTR), so const char* does not describe the reality */
extern unzFile ZEXPORT unzOpen2 OF((const char *path, zlib_filefunc_def* pzlib_filefunc_def));
/* Open a Zip file, like unzOpen, but provide a set of file low level API for read/write operations */
extern unzFile ZEXPORT unzOpen2_64 OF((const void *path, zlib_filefunc64_def* pzlib_filefunc_def));
/* Open a Zip file, like unz64Open, but provide a set of file low level API for read/write 64-bit operations */
extern int ZEXPORT unzClose OF((unzFile file));
/* Close a ZipFile opened with unzipOpen. If there is files inside the .Zip opened with unzOpenCurrentFile,
these files MUST be closed with unzipCloseCurrentFile before call unzipClose.
return UNZ_OK if there is no error */
extern int ZEXPORT unzGetGlobalInfo OF((unzFile file, unz_global_info *pglobal_info));
extern int ZEXPORT unzGetGlobalInfo64 OF((unzFile file, unz_global_info64 *pglobal_info));
/* Write info about the ZipFile in the *pglobal_info structure.
return UNZ_OK if no error */
extern int ZEXPORT unzGetGlobalComment OF((unzFile file, char *comment, uLong comment_size));
/* Get the global comment string of the ZipFile, in the comment buffer.
uSizeBuf is the size of the szComment buffer.
return the number of byte copied or an error code <0 */
/***************************************************************************/
/* Reading the content of the current zipfile, you can open it, read data from it, and close it
(you can close it before reading all the file) */
extern int ZEXPORT unzOpenCurrentFile OF((unzFile file));
/* Open for reading data the current file in the zipfile.
return UNZ_OK if no error */
extern int ZEXPORT unzOpenCurrentFilePassword OF((unzFile file, const char* password));
/* Open for reading data the current file in the zipfile.
password is a crypting password
return UNZ_OK if no error */
extern int ZEXPORT unzOpenCurrentFile2 OF((unzFile file, int* method, int* level, int raw));
/* Same as unzOpenCurrentFile, but open for read raw the file (not uncompress)
if raw==1 *method will receive method of compression, *level will receive level of compression
NOTE: you can set level parameter as NULL (if you did not want known level,
but you CANNOT set method parameter as NULL */
extern int ZEXPORT unzOpenCurrentFile3 OF((unzFile file, int* method, int* level, int raw, const char* password));
/* Same as unzOpenCurrentFile, but takes extra parameter password for encrypted files */
extern int ZEXPORT unzReadCurrentFile OF((unzFile file, voidp buf, unsigned len));
/* Read bytes from the current file (opened by unzOpenCurrentFile)
buf contain buffer where data must be copied
len the size of buf.
return the number of byte copied if somes bytes are copied
return 0 if the end of file was reached
return <0 with error code if there is an error (UNZ_ERRNO for IO error, or zLib error for uncompress error) */
extern int ZEXPORT unzGetCurrentFileInfo OF((unzFile file, unz_file_info *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size));
extern int ZEXPORT unzGetCurrentFileInfo64 OF((unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size));
/* Get Info about the current file
pfile_info if != NULL, the *pfile_info structure will contain somes info about the current file
filename if != NULL, the file name string will be copied in filename
filename_size is the size of the filename buffer
extrafield if != NULL, the extra field information from the central header will be copied in to
extrafield_size is the size of the extraField buffer
comment if != NULL, the comment string of the file will be copied in to
comment_size is the size of the comment buffer */
extern ZPOS64_T ZEXPORT unzGetCurrentFileZStreamPos64 OF((unzFile file));
extern int ZEXPORT unzGetLocalExtrafield OF((unzFile file, voidp buf, unsigned len));
/* Read extra field from the current file (opened by unzOpenCurrentFile)
This is the local-header version of the extra field (sometimes, there is
more info in the local-header version than in the central-header)
if buf == NULL, it return the size of the local extra field
if buf != NULL, len is the size of the buffer, the extra header is copied in buf.
return number of bytes copied in buf, or (if <0) the error code */
extern int ZEXPORT unzCloseCurrentFile OF((unzFile file));
/* Close the file in zip opened with unzOpenCurrentFile
return UNZ_CRCERROR if all the file was read but the CRC is not good */
/***************************************************************************/
/* Browse the directory of the zipfile */
typedef int (*unzFileNameComparer)(unzFile file, const char *filename1, const char *filename2);
typedef int (*unzIteratorFunction)(unzFile file);
typedef int (*unzIteratorFunction2)(unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size);
extern int ZEXPORT unzGoToFirstFile OF((unzFile file));
/* Set the current file of the zipfile to the first file.
return UNZ_OK if no error */
extern int ZEXPORT unzGoToFirstFile2 OF((unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size));
/* Set the current file of the zipfile to the first file and retrieves the current info on success.
Not as seek intensive as unzGoToFirstFile + unzGetCurrentFileInfo.
return UNZ_OK if no error */
extern int ZEXPORT unzGoToNextFile OF((unzFile file));
/* Set the current file of the zipfile to the next file.
return UNZ_OK if no error
return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest */
extern int ZEXPORT unzGoToNextFile2 OF((unzFile file, unz_file_info64 *pfile_info, char *filename,
uLong filename_size, void *extrafield, uLong extrafield_size, char *comment, uLong comment_size));
/* Set the current file of the zipfile to the next file and retrieves the current
info on success. Does less seeking around than unzGotoNextFile + unzGetCurrentFileInfo.
return UNZ_OK if no error
return UNZ_END_OF_LIST_OF_FILE if the actual file was the latest */
extern int ZEXPORT unzLocateFile OF((unzFile file, const char *filename, unzFileNameComparer filename_compare_func));
/* Try locate the file szFileName in the zipfile. For custom filename comparison pass in comparison function.
return UNZ_OK if the file is found (it becomes the current file)
return UNZ_END_OF_LIST_OF_FILE if the file is not found */
/***************************************************************************/
/* Raw access to zip file */
typedef struct unz_file_pos_s
{
uLong pos_in_zip_directory; /* offset in zip file directory */
uLong num_of_file; /* # of file */
} unz_file_pos;
extern int ZEXPORT unzGetFilePos OF((unzFile file, unz_file_pos* file_pos));
extern int ZEXPORT unzGoToFilePos OF((unzFile file, unz_file_pos* file_pos));
typedef struct unz64_file_pos_s
{
ZPOS64_T pos_in_zip_directory; /* offset in zip file directory */
ZPOS64_T num_of_file; /* # of file */
} unz64_file_pos;
extern int ZEXPORT unzGetFilePos64 OF((unzFile file, unz64_file_pos* file_pos));
extern int ZEXPORT unzGoToFilePos64 OF((unzFile file, const unz64_file_pos* file_pos));
extern uLong ZEXPORT unzGetOffset OF((unzFile file));
extern ZPOS64_T ZEXPORT unzGetOffset64 OF((unzFile file));
/* Get the current file offset */
extern int ZEXPORT unzSetOffset OF((unzFile file, uLong pos));
extern int ZEXPORT unzSetOffset64 OF((unzFile file, ZPOS64_T pos));
/* Set the current file offset */
extern z_off_t ZEXPORT unztell OF((unzFile file));
extern ZPOS64_T ZEXPORT unztell64 OF((unzFile file));
/* return current position in uncompressed data */
extern int ZEXPORT unzeof OF((unzFile file));
/* return 1 if the end of file was reached, 0 elsewhere */
/***************************************************************************/
#ifdef __cplusplus
}
#endif
#endif /* _UNZ_H */
/* zip.c -- IO on .zip files using zlib
Version 1.1, February 14h, 2010
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications for Zip64 support
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
Modifications for AES, PKWARE disk spanning
Copyright (C) 2010-2014 Nathan Moinvaziri
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "zlib.h"
#include "zip.h"
#ifdef STDC
# include <stddef.h>
# include <string.h>
# include <stdlib.h>
#endif
#ifdef NO_ERRNO_H
extern int errno;
#else
# include <errno.h>
#endif
#ifdef HAVE_AES
# define AES_METHOD (99)
# define AES_PWVERIFYSIZE (2)
# define AES_AUTHCODESIZE (10)
# define AES_MAXSALTLENGTH (16)
# define AES_VERSION (0x0001)
# define AES_ENCRYPTIONMODE (0x03)
# include "aes.h"
# include "fileenc.h"
# include "prng.h"
# include "entropy.h"
#endif
#ifndef NOCRYPT
# define INCLUDECRYPTINGCODE_IFCRYPTALLOWED
# include "crypt.h"
#endif
#ifndef local
# define local static
#endif
/* compile with -Dlocal if your debugger can't find static symbols */
#define SIZEDATA_INDATABLOCK (4096 - (4 * 4))
#define DISKHEADERMAGIC (0x08074b50)
#define LOCALHEADERMAGIC (0x04034b50)
#define CENTRALHEADERMAGIC (0x02014b50)
#define ENDHEADERMAGIC (0x06054b50)
#define ZIP64ENDHEADERMAGIC (0x06064b50)
#define ZIP64ENDLOCHEADERMAGIC (0x07064b50)
#define FLAG_LOCALHEADER_OFFSET (0x06)
#define CRC_LOCALHEADER_OFFSET (0x0e)
#define SIZECENTRALHEADER (0x2e) /* 46 */
#define SIZECENTRALHEADERLOCATOR (0x14) /* 20 */
#define SIZECENTRALDIRITEM (0x2e)
#define SIZEZIPLOCALHEADER (0x1e)
#ifndef BUFREADCOMMENT
# define BUFREADCOMMENT (0x400)
#endif
#ifndef VERSIONMADEBY
# define VERSIONMADEBY (0x0) /* platform dependent */
#endif
#ifndef Z_BUFSIZE
# define Z_BUFSIZE (64 * 1024)
#endif
#ifndef Z_MAXFILENAMEINZIP
# define Z_MAXFILENAMEINZIP (256)
#endif
#ifndef ALLOC
# define ALLOC(size) (malloc(size))
#endif
#ifndef TRYFREE
# define TRYFREE(p) {if (p) free(p); }
#endif
/* NOT sure that this work on ALL platform */
#define MAKEULONG64(a, b) ((ZPOS64_T)(((unsigned long)(a)) | ((ZPOS64_T)((unsigned long)(b))) << 32))
#ifndef DEF_MEM_LEVEL
# if MAX_MEM_LEVEL >= 8
# define DEF_MEM_LEVEL 8
# else
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
# endif
#endif
const char zip_copyright[] = " zip 1.01 Copyright 1998-2004 Gilles Vollant - http://www.winimage.com/zLibDll";
typedef struct linkedlist_datablock_internal_s {
struct linkedlist_datablock_internal_s *next_datablock;
uLong avail_in_this_block;
uLong filled_in_this_block;
uLong unused; /* for future use and alignment */
unsigned char data[SIZEDATA_INDATABLOCK];
} linkedlist_datablock_internal;
typedef struct linkedlist_data_s {
linkedlist_datablock_internal *first_block;
linkedlist_datablock_internal *last_block;
} linkedlist_data;
typedef struct {
z_stream stream; /* zLib stream structure for inflate */
#ifdef HAVE_BZIP2
bz_stream bstream; /* bzLib stream structure for bziped */
#endif
#ifdef HAVE_AES
fcrypt_ctx aes_ctx;
prng_ctx aes_rng[1];
#endif
int stream_initialised; /* 1 is stream is initialized */
uInt pos_in_buffered_data; /* last written byte in buffered_data */
ZPOS64_T pos_local_header; /* offset of the local header of the file currently writing */
char *central_header; /* central header data for the current file */
uLong size_centralextra;
uLong size_centralheader; /* size of the central header for cur file */
uLong size_centralextrafree; /* Extra bytes allocated to the central header but that are not used */
uLong size_comment;
uLong flag; /* flag of the file currently writing */
int method; /* compression method written to file.*/
int compression_method; /* compression method to use */
int raw; /* 1 for directly writing raw data */
Byte buffered_data[Z_BUFSIZE]; /* buffer contain compressed data to be writ*/
uLong dosDate;
uLong crc32;
int zip64; /* Add ZIP64 extended information in the extra field */
uLong number_disk; /* number of current disk used for spanning ZIP */
ZPOS64_T pos_zip64extrainfo;
ZPOS64_T total_compressed;
ZPOS64_T total_uncompressed;
#ifndef NOCRYPT
unsigned long keys[3]; /* keys defining the pseudo-random sequence */
const unsigned long *pcrc_32_tab;
int crypt_header_size;
#endif
} curfile64_info;
typedef struct {
zlib_filefunc64_32_def z_filefunc;
voidpf filestream; /* io structure of the zipfile */
voidpf filestream_with_CD; /* io structure of the zipfile with the central dir */
linkedlist_data central_dir; /* datablock with central dir in construction*/
int in_opened_file_inzip; /* 1 if a file in the zip is currently writ.*/
int append; /* append mode */
curfile64_info ci; /* info on the file currently writing */
ZPOS64_T begin_pos; /* position of the beginning of the zipfile */
ZPOS64_T add_position_when_writting_offset;
ZPOS64_T number_entry;
ZPOS64_T disk_size; /* size of each disk */
uLong number_disk; /* number of the current disk, used for spanning ZIP */
uLong number_disk_with_CD; /* number the the disk with central dir, used for spanning ZIP */
#ifndef NO_ADDFILEINEXISTINGZIP
char *globalcomment;
#endif
} zip64_internal;
/* Allocate a new data block */
local linkedlist_datablock_internal *allocate_new_datablock OF(());
local linkedlist_datablock_internal *allocate_new_datablock()
{
linkedlist_datablock_internal *ldi;
ldi = (linkedlist_datablock_internal *)ALLOC(sizeof(linkedlist_datablock_internal));
if (ldi != NULL) {
ldi->next_datablock = NULL;
ldi->filled_in_this_block = 0;
ldi->avail_in_this_block = SIZEDATA_INDATABLOCK;
}
return ldi;
}
/* Free data block in linked list */
local void free_datablock OF((linkedlist_datablock_internal * ldi));
local void free_datablock(linkedlist_datablock_internal *ldi)
{
while (ldi != NULL) {
linkedlist_datablock_internal *ldinext = ldi->next_datablock;
TRYFREE(ldi);
ldi = ldinext;
}
}
/* Initialize linked list */
local void init_linkedlist OF((linkedlist_data * ll));
local void init_linkedlist(linkedlist_data *ll)
{
ll->first_block = ll->last_block = NULL;
}
/* Free entire linked list and all data blocks */
local void free_linkedlist OF((linkedlist_data * ll));
local void free_linkedlist(linkedlist_data *ll)
{
free_datablock(ll->first_block);
ll->first_block = ll->last_block = NULL;
}
/* Add data to linked list data block */
local int add_data_in_datablock OF((linkedlist_data * ll, const void *buf, uLong len));
local int add_data_in_datablock(linkedlist_data *ll, const void *buf, uLong len)
{
linkedlist_datablock_internal *ldi;
const unsigned char *from_copy;
if (ll == NULL)
return ZIP_INTERNALERROR;
if (ll->last_block == NULL) {
ll->first_block = ll->last_block = allocate_new_datablock();
if (ll->first_block == NULL)
return ZIP_INTERNALERROR;
}
ldi = ll->last_block;
from_copy = (unsigned char *)buf;
while (len > 0) {
uInt copy_this;
uInt i;
unsigned char *to_copy;
if (ldi->avail_in_this_block == 0) {
ldi->next_datablock = allocate_new_datablock();
if (ldi->next_datablock == NULL)
return ZIP_INTERNALERROR;
ldi = ldi->next_datablock;
ll->last_block = ldi;
}
if (ldi->avail_in_this_block < len)
copy_this = (uInt)ldi->avail_in_this_block;
else
copy_this = (uInt)len;
to_copy = &(ldi->data[ldi->filled_in_this_block]);
for (i = 0; i < copy_this; i++)
*(to_copy + i) = *(from_copy + i);
ldi->filled_in_this_block += copy_this;
ldi->avail_in_this_block -= copy_this;
from_copy += copy_this;
len -= copy_this;
}
return ZIP_OK;
}
local uLong zip64local_TmzDateToDosDate OF((const tm_zip * ptm));
local uLong zip64local_TmzDateToDosDate(const tm_zip *ptm)
{
uLong year;
#define zip64local_in_range(min, max, value) ((min) <= (value) && (value) <= (max))
/* Years supported:
* [00, 79] (assumed to be between 2000 and 2079)
* [80, 207] (assumed to be between 1980 and 2107, typical output of old
software that does 'year-1900' to get a double digit year)
* [1980, 2107]
Due to the date format limitations, only years between 1980 and 2107 can be stored.
*/
if (!(zip64local_in_range(1980, 2107, ptm->tm_year) || zip64local_in_range(0, 207, ptm->tm_year)) ||
!zip64local_in_range(0, 11, ptm->tm_mon) ||
!zip64local_in_range(1, 31, ptm->tm_mday) ||
!zip64local_in_range(0, 23, ptm->tm_hour) ||
!zip64local_in_range(0, 59, ptm->tm_min) ||
!zip64local_in_range(0, 59, ptm->tm_sec))
return 0;
#undef zip64local_in_range
year = (uLong)ptm->tm_year;
if (year >= 1980) /* range [1980, 2107] */
year -= 1980;
else if (year >= 80) /* range [80, 99] */
year -= 80;
else /* range [00, 79] */
year += 20;
return
(uLong)(((ptm->tm_mday) + (32 * (ptm->tm_mon + 1)) + (512 * year)) << 16) |
((ptm->tm_sec / 2) + (32 * ptm->tm_min) + (2048 * (uLong)ptm->tm_hour));
}
/* Inputs a long in LSB order to the given file: nbByte == 1, 2 ,4 or 8 (byte, short or long, ZPOS64_T) */
local int zip64local_putValue OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream,
ZPOS64_T x, int nbByte));
local int zip64local_putValue(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream,
ZPOS64_T x, int nbByte)
{
unsigned char buf[8];
int n;
for (n = 0; n < nbByte; n++) {
buf[n] = (unsigned char)(x & 0xff);
x >>= 8;
}
if (x != 0) {
/* data overflow - hack for ZIP64 (X Roche) */
for (n = 0; n < nbByte; n++) {
buf[n] = 0xff;
}
}
if (ZWRITE64(*pzlib_filefunc_def, filestream, buf, nbByte) != (uLong)nbByte)
return ZIP_ERRNO;
return ZIP_OK;
}
local void zip64local_putValue_inmemory OF((void *dest, ZPOS64_T x, int nbByte));
local void zip64local_putValue_inmemory(void *dest, ZPOS64_T x, int nbByte)
{
unsigned char *buf = (unsigned char *)dest;
int n;
for (n = 0; n < nbByte; n++) {
buf[n] = (unsigned char)(x & 0xff);
x >>= 8;
}
if (x != 0) {
/* data overflow - hack for ZIP64 */
for (n = 0; n < nbByte; n++) {
buf[n] = 0xff;
}
}
}
local int zip64local_getByte OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, int *pi));
local int zip64local_getByte(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, int *pi)
{
unsigned char c;
int err = (int)ZREAD64(*pzlib_filefunc_def, filestream, &c, 1);
if (err == 1) {
*pi = (int)c;
return ZIP_OK;
}
if (ZERROR64(*pzlib_filefunc_def, filestream))
return ZIP_ERRNO;
return ZIP_EOF;
}
local int zip64local_getShort OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, uLong * pX));
local int zip64local_getShort(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, uLong *pX)
{
uLong x;
int i = 0;
int err;
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (uLong)i;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((uLong)i) << 8;
if (err == ZIP_OK)
*pX = x;
else
*pX = 0;
return err;
}
local int zip64local_getLong OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, uLong * pX));
local int zip64local_getLong(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, uLong *pX)
{
uLong x;
int i = 0;
int err;
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (uLong)i;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((uLong)i) << 8;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((uLong)i) << 16;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((uLong)i) << 24;
if (err == ZIP_OK)
*pX = x;
else
*pX = 0;
return err;
}
local int zip64local_getLong64 OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream, ZPOS64_T * pX));
local int zip64local_getLong64(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream, ZPOS64_T *pX)
{
ZPOS64_T x;
int i = 0;
int err;
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x = (ZPOS64_T)i;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 8;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 16;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 24;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 32;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 40;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 48;
if (err == ZIP_OK)
err = zip64local_getByte(pzlib_filefunc_def, filestream, &i);
x += ((ZPOS64_T)i) << 56;
if (err == ZIP_OK)
*pX = x;
else
*pX = 0;
return err;
}
/* Gets the amount of bytes left to write to the current disk for spanning archives */
local int zipGetDiskSizeAvailable OF((zipFile file, ZPOS64_T * size_available));
local int zipGetDiskSizeAvailable(zipFile file, ZPOS64_T *size_available)
{
zip64_internal *zi;
ZPOS64_T current_disk_size;
zi = (zip64_internal *)file;
ZSEEK64(zi->z_filefunc, zi->filestream, 0, ZLIB_FILEFUNC_SEEK_END);
current_disk_size = ZTELL64(zi->z_filefunc, zi->filestream);
*size_available = zi->disk_size - current_disk_size;
return ZIP_OK;
}
/* Goes to a specific disk number for spanning archives */
local int zipGoToSpecificDisk OF((zipFile file, int number_disk, int open_existing));
local int zipGoToSpecificDisk(zipFile file, int number_disk, int open_existing)
{
zip64_internal *zi;
int err = ZIP_OK;
zi = (zip64_internal *)file;
if (zi->disk_size == 0)
return err;
if ((zi->filestream != NULL) && (zi->filestream != zi->filestream_with_CD))
ZCLOSE64(zi->z_filefunc, zi->filestream);
zi->filestream = ZOPENDISK64(zi->z_filefunc, zi->filestream_with_CD, number_disk, (open_existing == 1) ?
(ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_WRITE | ZLIB_FILEFUNC_MODE_EXISTING) :
(ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_WRITE | ZLIB_FILEFUNC_MODE_CREATE));
if (zi->filestream == NULL)
err = ZIP_ERRNO;
return err;
}
/* Goes to the first disk in a spanned archive */
local int zipGoToFirstDisk OF((zipFile file));
local int zipGoToFirstDisk(zipFile file)
{
zip64_internal *zi;
int number_disk_next;
int err = ZIP_OK;
zi = (zip64_internal *)file;
if (zi->disk_size == 0)
return err;
number_disk_next = 0;
if (zi->number_disk_with_CD > 0)
number_disk_next = (int)zi->number_disk_with_CD - 1;
err = zipGoToSpecificDisk(file, number_disk_next, (zi->append == APPEND_STATUS_ADDINZIP));
if ((err == ZIP_ERRNO) && (zi->append == APPEND_STATUS_ADDINZIP))
err = zipGoToSpecificDisk(file, number_disk_next, 0);
if (err == ZIP_OK)
zi->number_disk = number_disk_next;
ZSEEK64(zi->z_filefunc, zi->filestream, 0, ZLIB_FILEFUNC_SEEK_END);
return err;
}
/* Goes to the next disk in a spanned archive */
local int zipGoToNextDisk OF((zipFile file));
local int zipGoToNextDisk(zipFile file)
{
zip64_internal *zi;
ZPOS64_T size_available_in_disk;
int err = ZIP_OK;
int number_disk_next;
zi = (zip64_internal *)file;
if (zi->disk_size == 0)
return err;
number_disk_next = (int)zi->number_disk + 1;
do {
err = zipGoToSpecificDisk(file, number_disk_next, (zi->append == APPEND_STATUS_ADDINZIP));
if ((err == ZIP_ERRNO) && (zi->append == APPEND_STATUS_ADDINZIP))
err = zipGoToSpecificDisk(file, number_disk_next, 0);
if (err != ZIP_OK)
break;
err = zipGetDiskSizeAvailable(file, &size_available_in_disk);
if (err != ZIP_OK)
break;
zi->number_disk = number_disk_next;
zi->number_disk_with_CD = zi->number_disk + 1;
number_disk_next += 1;
} while (size_available_in_disk <= 0);
return err;
}
/* Locate the Central directory of a zipfile (at the end, just before the global comment) */
local ZPOS64_T zip64local_SearchCentralDir OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream));
local ZPOS64_T zip64local_SearchCentralDir(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream)
{
unsigned char *buf;
ZPOS64_T file_size;
ZPOS64_T back_read = 4;
ZPOS64_T max_back = 0xffff; /* maximum size of global comment */
ZPOS64_T pos_found = 0;
uLong read_size;
ZPOS64_T read_pos;
int i;
buf = (unsigned char *)ALLOC(BUFREADCOMMENT + 4);
if (buf == NULL)
return 0;
if (ZSEEK64(*pzlib_filefunc_def, filestream, 0, ZLIB_FILEFUNC_SEEK_END) != 0) {
TRYFREE(buf);
return 0;
}
file_size = ZTELL64(*pzlib_filefunc_def, filestream);
if (max_back > file_size)
max_back = file_size;
while (back_read < max_back) {
if (back_read + BUFREADCOMMENT > max_back)
back_read = max_back;
else
back_read += BUFREADCOMMENT;
read_pos = file_size - back_read;
read_size = ((BUFREADCOMMENT + 4) < (file_size - read_pos)) ?
(BUFREADCOMMENT + 4) : (uLong)(file_size - read_pos);
if (ZSEEK64(*pzlib_filefunc_def, filestream, read_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
break;
if (ZREAD64(*pzlib_filefunc_def, filestream, buf, read_size) != read_size)
break;
for (i = (int)read_size - 3; (i--) > 0; )
if ((*(buf + i)) == (ENDHEADERMAGIC & 0xff) &&
(*(buf + i + 1)) == (ENDHEADERMAGIC >> 8 & 0xff) &&
(*(buf + i + 2)) == (ENDHEADERMAGIC >> 16 & 0xff) &&
(*(buf + i + 3)) == (ENDHEADERMAGIC >> 24 & 0xff)) {
pos_found = read_pos + i;
break;
}
if (pos_found != 0)
break;
}
TRYFREE(buf);
return pos_found;
}
/* Locate the Central directory 64 of a zipfile (at the end, just before the global comment) */
local ZPOS64_T zip64local_SearchCentralDir64 OF((const zlib_filefunc64_32_def * pzlib_filefunc_def, voidpf filestream,
const ZPOS64_T endcentraloffset));
local ZPOS64_T zip64local_SearchCentralDir64(const zlib_filefunc64_32_def *pzlib_filefunc_def, voidpf filestream,
const ZPOS64_T endcentraloffset)
{
ZPOS64_T offset;
uLong uL;
/* Zip64 end of central directory locator */
if (ZSEEK64(*pzlib_filefunc_def, filestream, endcentraloffset - SIZECENTRALHEADERLOCATOR, ZLIB_FILEFUNC_SEEK_SET) != 0)
return 0;
/* read locator signature */
if (zip64local_getLong(pzlib_filefunc_def, filestream, &uL) != ZIP_OK)
return 0;
if (uL != ZIP64ENDLOCHEADERMAGIC)
return 0;
/* number of the disk with the start of the zip64 end of central directory */
if (zip64local_getLong(pzlib_filefunc_def, filestream, &uL) != ZIP_OK)
return 0;
/* relative offset of the zip64 end of central directory record */
if (zip64local_getLong64(pzlib_filefunc_def, filestream, &offset) != ZIP_OK)
return 0;
/* total number of disks */
if (zip64local_getLong(pzlib_filefunc_def, filestream, &uL) != ZIP_OK)
return 0;
/* Goto end of central directory record */
if (ZSEEK64(*pzlib_filefunc_def, filestream, offset, ZLIB_FILEFUNC_SEEK_SET) != 0)
return 0;
/* the signature */
if (zip64local_getLong(pzlib_filefunc_def, filestream, &uL) != ZIP_OK)
return 0;
if (uL != ZIP64ENDHEADERMAGIC)
return 0;
return offset;
}
extern zipFile ZEXPORT zipOpen4(const void *pathname, int append, ZPOS64_T disk_size, zipcharpc *globalcomment,
zlib_filefunc64_32_def *pzlib_filefunc64_32_def)
{
zip64_internal ziinit;
zip64_internal *zi;
#ifndef NO_ADDFILEINEXISTINGZIP
ZPOS64_T byte_before_the_zipfile; /* byte before the zipfile, (>0 for sfx)*/
ZPOS64_T size_central_dir = 0; /* size of the central directory */
ZPOS64_T offset_central_dir = 0; /* offset of start of central directory */
ZPOS64_T number_entry_CD = 0; /* total number of entries in the central dir */
ZPOS64_T number_entry;
ZPOS64_T central_pos;
ZPOS64_T size_central_dir_to_read;
uLong uL;
uLong size_comment = 0;
size_t buf_size = SIZEDATA_INDATABLOCK;
void *buf_read;
#endif
int err = ZIP_OK;
int mode;
ziinit.z_filefunc.zseek32_file = NULL;
ziinit.z_filefunc.ztell32_file = NULL;
if (pzlib_filefunc64_32_def == NULL)
fill_fopen64_filefunc(&ziinit.z_filefunc.zfile_func64);
else
ziinit.z_filefunc = *pzlib_filefunc64_32_def;
if (append == APPEND_STATUS_CREATE)
mode = (ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_WRITE | ZLIB_FILEFUNC_MODE_CREATE);
else
mode = (ZLIB_FILEFUNC_MODE_READ | ZLIB_FILEFUNC_MODE_WRITE | ZLIB_FILEFUNC_MODE_EXISTING);
ziinit.filestream = ZOPEN64(ziinit.z_filefunc, pathname, mode);
if (ziinit.filestream == NULL)
return NULL;
if (append == APPEND_STATUS_CREATEAFTER) {
/* Don't support spanning ZIP with APPEND_STATUS_CREATEAFTER */
if (disk_size > 0)
return NULL;
ZSEEK64(ziinit.z_filefunc, ziinit.filestream, 0, SEEK_END);
}
ziinit.filestream_with_CD = ziinit.filestream;
ziinit.append = append;
ziinit.number_disk = 0;
ziinit.number_disk_with_CD = 0;
ziinit.disk_size = disk_size;
ziinit.begin_pos = ZTELL64(ziinit.z_filefunc, ziinit.filestream);
ziinit.in_opened_file_inzip = 0;
ziinit.ci.stream_initialised = 0;
ziinit.number_entry = 0;
ziinit.add_position_when_writting_offset = 0;
init_linkedlist(&(ziinit.central_dir));
zi = (zip64_internal *)ALLOC(sizeof(zip64_internal));
if (zi == NULL) {
ZCLOSE64(ziinit.z_filefunc, ziinit.filestream);
return NULL;
}
#ifndef NO_ADDFILEINEXISTINGZIP
/* Add file in a zipfile */
ziinit.globalcomment = NULL;
if (append == APPEND_STATUS_ADDINZIP) {
/* Read and Cache Central Directory Records */
central_pos = zip64local_SearchCentralDir(&ziinit.z_filefunc, ziinit.filestream);
/* disable to allow appending to empty ZIP archive (must be standard zip, not zip64)
if (central_pos == 0)
err = ZIP_ERRNO;
*/
if (err == ZIP_OK) {
/* read end of central directory info */
if (ZSEEK64(ziinit.z_filefunc, ziinit.filestream, central_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
/* the signature, already checked */
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
/* number of this disk */
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &ziinit.number_disk) != ZIP_OK)
err = ZIP_ERRNO;
/* number of the disk with the start of the central directory */
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &ziinit.number_disk_with_CD) != ZIP_OK)
err = ZIP_ERRNO;
/* total number of entries in the central dir on this disk */
number_entry = 0;
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
else
number_entry = uL;
/* total number of entries in the central dir */
number_entry_CD = 0;
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
else
number_entry_CD = uL;
if (number_entry_CD != number_entry)
err = ZIP_BADZIPFILE;
/* size of the central directory */
size_central_dir = 0;
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
else
size_central_dir = uL;
/* offset of start of central directory with respect to the starting disk number */
offset_central_dir = 0;
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
else
offset_central_dir = uL;
/* zipfile global comment length */
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &size_comment) != ZIP_OK)
err = ZIP_ERRNO;
if ((err == ZIP_OK) && ((number_entry_CD == 0xffff) || (offset_central_dir == 0xffffffff))) {
/* Format should be Zip64, as the central directory or file size is too large */
central_pos = zip64local_SearchCentralDir64(&ziinit.z_filefunc, ziinit.filestream, central_pos);
if (central_pos) {
ZPOS64_T sizeEndOfCentralDirectory;
if (ZSEEK64(ziinit.z_filefunc, ziinit.filestream, central_pos, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
/* the signature, already checked */
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
/* size of zip64 end of central directory record */
if (zip64local_getLong64(&ziinit.z_filefunc, ziinit.filestream, &sizeEndOfCentralDirectory) != ZIP_OK)
err = ZIP_ERRNO;
/* version made by */
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
/* version needed to extract */
if (zip64local_getShort(&ziinit.z_filefunc, ziinit.filestream, &uL) != ZIP_OK)
err = ZIP_ERRNO;
/* number of this disk */
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &ziinit.number_disk) != ZIP_OK)
err = ZIP_ERRNO;
/* number of the disk with the start of the central directory */
if (zip64local_getLong(&ziinit.z_filefunc, ziinit.filestream, &ziinit.number_disk_with_CD) != ZIP_OK)
err = ZIP_ERRNO;
/* total number of entries in the central directory on this disk */
if (zip64local_getLong64(&ziinit.z_filefunc, ziinit.filestream, &number_entry) != ZIP_OK)
err = ZIP_ERRNO;
/* total number of entries in the central directory */
if (zip64local_getLong64(&ziinit.z_filefunc, ziinit.filestream, &number_entry_CD) != ZIP_OK)
err = ZIP_ERRNO;
if (number_entry_CD != number_entry)
err = ZIP_BADZIPFILE;
/* size of the central directory */
if (zip64local_getLong64(&ziinit.z_filefunc, ziinit.filestream, &size_central_dir) != ZIP_OK)
err = ZIP_ERRNO;
/* offset of start of central directory with respect to the starting disk number */
if (zip64local_getLong64(&ziinit.z_filefunc, ziinit.filestream, &offset_central_dir) != ZIP_OK)
err = ZIP_ERRNO;
} else
err = ZIP_BADZIPFILE;
}
}
if ((err == ZIP_OK) && (central_pos < offset_central_dir + size_central_dir))
err = ZIP_BADZIPFILE;
if (err != ZIP_OK) {
ZCLOSE64(ziinit.z_filefunc, ziinit.filestream);
TRYFREE(zi);
return NULL;
}
if (size_comment > 0) {
ziinit.globalcomment = (char *)ALLOC(size_comment + 1);
if (ziinit.globalcomment) {
size_comment = ZREAD64(ziinit.z_filefunc, ziinit.filestream, ziinit.globalcomment, size_comment);
ziinit.globalcomment[size_comment] = 0;
}
}
byte_before_the_zipfile = central_pos - (offset_central_dir + size_central_dir);
ziinit.add_position_when_writting_offset = byte_before_the_zipfile;
/* Store central directory in memory */
size_central_dir_to_read = size_central_dir;
buf_size = SIZEDATA_INDATABLOCK;
buf_read = (void *)ALLOC(buf_size);
if (buf_read == NULL)
err = ZIP_INTERNALERROR;
if (ZSEEK64(ziinit.z_filefunc, ziinit.filestream,
offset_central_dir + byte_before_the_zipfile, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
while ((size_central_dir_to_read > 0) && (err == ZIP_OK)) {
ZPOS64_T read_this = SIZEDATA_INDATABLOCK;
if (read_this > size_central_dir_to_read)
read_this = size_central_dir_to_read;
if (ZREAD64(ziinit.z_filefunc, ziinit.filestream, buf_read, (uLong)read_this) != read_this)
err = ZIP_ERRNO;
if (err == ZIP_OK)
err = add_data_in_datablock(&ziinit.central_dir, buf_read, (uLong)read_this);
size_central_dir_to_read -= read_this;
}
TRYFREE(buf_read);
ziinit.begin_pos = byte_before_the_zipfile;
ziinit.number_entry = number_entry_CD;
if (ZSEEK64(ziinit.z_filefunc, ziinit.filestream,
offset_central_dir + byte_before_the_zipfile, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
}
if (globalcomment)
*globalcomment = ziinit.globalcomment;
#endif
if (err != ZIP_OK) {
#ifndef NO_ADDFILEINEXISTINGZIP
TRYFREE(ziinit.globalcomment);
#endif
TRYFREE(zi);
return NULL;
}
*zi = ziinit;
zipGoToFirstDisk((zipFile)zi);
return (zipFile)zi;
}
extern zipFile ZEXPORT zipOpen2(const char *pathname, int append, zipcharpc *globalcomment,
zlib_filefunc_def *pzlib_filefunc32_def)
{
if (pzlib_filefunc32_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
fill_zlib_filefunc64_32_def_from_filefunc32(&zlib_filefunc64_32_def_fill, pzlib_filefunc32_def);
return zipOpen4(pathname, append, 0, globalcomment, &zlib_filefunc64_32_def_fill);
}
return zipOpen4(pathname, append, 0, globalcomment, NULL);
}
extern zipFile ZEXPORT zipOpen2_64(const void *pathname, int append, zipcharpc *globalcomment,
zlib_filefunc64_def *pzlib_filefunc_def)
{
if (pzlib_filefunc_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
zlib_filefunc64_32_def_fill.zfile_func64 = *pzlib_filefunc_def;
zlib_filefunc64_32_def_fill.ztell32_file = NULL;
zlib_filefunc64_32_def_fill.zseek32_file = NULL;
return zipOpen4(pathname, append, 0, globalcomment, &zlib_filefunc64_32_def_fill);
}
return zipOpen4(pathname, append, 0, globalcomment, NULL);
}
extern zipFile ZEXPORT zipOpen3(const char *pathname, int append, ZPOS64_T disk_size, zipcharpc *globalcomment,
zlib_filefunc_def *pzlib_filefunc32_def)
{
if (pzlib_filefunc32_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
fill_zlib_filefunc64_32_def_from_filefunc32(&zlib_filefunc64_32_def_fill, pzlib_filefunc32_def);
return zipOpen4(pathname, append, disk_size, globalcomment, &zlib_filefunc64_32_def_fill);
}
return zipOpen4(pathname, append, disk_size, globalcomment, NULL);
}
extern zipFile ZEXPORT zipOpen3_64(const void *pathname, int append, ZPOS64_T disk_size, zipcharpc *globalcomment,
zlib_filefunc64_def *pzlib_filefunc_def)
{
if (pzlib_filefunc_def != NULL) {
zlib_filefunc64_32_def zlib_filefunc64_32_def_fill;
zlib_filefunc64_32_def_fill.zfile_func64 = *pzlib_filefunc_def;
zlib_filefunc64_32_def_fill.ztell32_file = NULL;
zlib_filefunc64_32_def_fill.zseek32_file = NULL;
return zipOpen4(pathname, append, disk_size, globalcomment, &zlib_filefunc64_32_def_fill);
}
return zipOpen4(pathname, append, disk_size, globalcomment, NULL);
}
extern zipFile ZEXPORT zipOpen(const char *pathname, int append)
{
return zipOpen3((const void *)pathname, append, 0, NULL, NULL);
}
extern zipFile ZEXPORT zipOpen64(const void *pathname, int append)
{
return zipOpen3(pathname, append, 0, NULL, NULL);
}
extern int ZEXPORT zipOpenNewFileInZip4_64(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw, int windowBits, int memLevel,
int strategy, const char *password, uLong crcForCrypting, uLong versionMadeBy, uLong flagBase, int zip64)
{
zip64_internal *zi;
uInt size_filename;
uInt size_comment = 0;
uInt i;
int err = ZIP_OK;
ZPOS64_T size_available;
ZPOS64_T size_needed;
#ifdef NOCRYPT
(crcForCrypting);
if (password != NULL)
return ZIP_PARAMERROR;
#endif
if (file == NULL)
return ZIP_PARAMERROR;
if ((method != 0) &&
#ifdef HAVE_BZIP2
(method != Z_BZIP2ED) &&
#endif
(method != Z_DEFLATED))
return ZIP_PARAMERROR;
zi = (zip64_internal *)file;
if (zi->in_opened_file_inzip == 1) {
err = zipCloseFileInZip(file);
if (err != ZIP_OK)
return err;
}
if (filename == NULL)
filename = "-";
if (comment != NULL)
size_comment = (uInt)strlen(comment);
size_filename = (uInt)strlen(filename);
if (zipfi == NULL)
zi->ci.dosDate = 0;
else {
if (zipfi->dosDate != 0)
zi->ci.dosDate = zipfi->dosDate;
else
zi->ci.dosDate = zip64local_TmzDateToDosDate(&zipfi->tmz_date);
}
zi->ci.method = method;
zi->ci.compression_method = method;
zi->ci.crc32 = 0;
zi->ci.stream_initialised = 0;
zi->ci.pos_in_buffered_data = 0;
zi->ci.raw = raw;
zi->ci.flag = flagBase;
if ((level == 8) || (level == 9))
zi->ci.flag |= 2;
if (level == 2)
zi->ci.flag |= 4;
if (level == 1)
zi->ci.flag |= 6;
if (password != NULL) {
zi->ci.flag |= 1;
#ifdef HAVE_AES
zi->ci.method = AES_METHOD;
#endif
}
if (zi->disk_size > 0) {
if ((zi->number_disk == 0) && (zi->number_entry == 0))
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)DISKHEADERMAGIC, 4);
/* Make sure enough space available on current disk for local header */
zipGetDiskSizeAvailable((zipFile)zi, &size_available);
size_needed = 30 + size_filename + size_extrafield_local;
if (zi->ci.zip64)
size_needed += 20;
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD)
size_needed += 11;
#endif
if (size_available < size_needed)
zipGoToNextDisk((zipFile)zi);
}
zi->ci.pos_local_header = ZTELL64(zi->z_filefunc, zi->filestream);
zi->ci.size_comment = size_comment;
zi->ci.size_centralheader = SIZECENTRALHEADER + size_filename + size_extrafield_global;
zi->ci.size_centralextra = size_extrafield_global;
zi->ci.size_centralextrafree = 32; /* Extra space reserved for ZIP64 extra info */
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD)
zi->ci.size_centralextrafree += 11; /* Extra space reserved for AES extra info */
#endif
zi->ci.central_header = (char *)ALLOC((uInt)zi->ci.size_centralheader + zi->ci.size_centralextrafree + size_comment);
if (zi->ci.central_header == NULL)
return ZIP_INTERNALERROR;
zi->ci.number_disk = zi->number_disk;
/* Write central directory header */
zip64local_putValue_inmemory(zi->ci.central_header, (uLong)CENTRALHEADERMAGIC, 4);
zip64local_putValue_inmemory(zi->ci.central_header + 4, (uLong)versionMadeBy, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 6, (uLong)20, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 8, (uLong)zi->ci.flag, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 10, (uLong)zi->ci.method, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 12, (uLong)zi->ci.dosDate, 4);
zip64local_putValue_inmemory(zi->ci.central_header + 16, (uLong)0, 4); /*crc*/
zip64local_putValue_inmemory(zi->ci.central_header + 20, (uLong)0, 4); /*compr size*/
zip64local_putValue_inmemory(zi->ci.central_header + 24, (uLong)0, 4); /*uncompr size*/
zip64local_putValue_inmemory(zi->ci.central_header + 28, (uLong)size_filename, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 30, (uLong)size_extrafield_global, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 32, (uLong)size_comment, 2);
zip64local_putValue_inmemory(zi->ci.central_header + 34, (uLong)zi->ci.number_disk, 2); /*disk nm start*/
if (zipfi == NULL)
zip64local_putValue_inmemory(zi->ci.central_header + 36, (uLong)0, 2);
else
zip64local_putValue_inmemory(zi->ci.central_header + 36, (uLong)zipfi->internal_fa, 2);
if (zipfi == NULL)
zip64local_putValue_inmemory(zi->ci.central_header + 38, (uLong)0, 4);
else
zip64local_putValue_inmemory(zi->ci.central_header + 38, (uLong)zipfi->external_fa, 4);
if (zi->ci.pos_local_header >= 0xffffffff)
zip64local_putValue_inmemory(zi->ci.central_header + 42, (uLong)0xffffffff, 4);
else
zip64local_putValue_inmemory(zi->ci.central_header + 42,
(uLong)zi->ci.pos_local_header - zi->add_position_when_writting_offset, 4);
for (i = 0; i < size_filename; i++)
zi->ci.central_header[SIZECENTRALHEADER + i] = filename[i];
for (i = 0; i < size_extrafield_global; i++)
zi->ci.central_header[SIZECENTRALHEADER + size_filename + i] =
((const char *)extrafield_global)[i];
/* Store comment at the end for later repositioning */
for (i = 0; i < size_comment; i++)
zi->ci.central_header[zi->ci.size_centralheader +
zi->ci.size_centralextrafree + i] = comment[i];
if (zi->ci.central_header == NULL)
return ZIP_INTERNALERROR;
zi->ci.zip64 = zip64;
zi->ci.total_compressed = 0;
zi->ci.total_uncompressed = 0;
zi->ci.pos_zip64extrainfo = 0;
/* Write the local header */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)LOCALHEADERMAGIC, 4);
if (err == ZIP_OK) {
if (zi->ci.zip64)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)45, 2); /* version needed to extract */
else
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)20, 2); /* version needed to extract */
}
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->ci.flag, 2);
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->ci.method, 2);
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->ci.dosDate, 4);
/* CRC & compressed size & uncompressed size will be filled in later and rewritten later */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0, 4); /* crc 32, unknown */
if (err == ZIP_OK) {
if (zi->ci.zip64)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0xFFFFFFFF, 4); /* compressed size, unknown */
else
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0, 4); /* compressed size, unknown */
}
if (err == ZIP_OK) {
if (zi->ci.zip64) /* uncompressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0xFFFFFFFF, 4);
else /* uncompressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0, 4);
}
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)size_filename, 2);
if (err == ZIP_OK) {
ZPOS64_T size_extrafield = size_extrafield_local;
if (zi->ci.zip64)
size_extrafield += 20;
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD)
size_extrafield += 11;
#endif
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)size_extrafield, 2);
}
if ((err == ZIP_OK) && (size_filename > 0)) {
if (ZWRITE64(zi->z_filefunc, zi->filestream, filename, size_filename) != size_filename)
err = ZIP_ERRNO;
}
if ((err == ZIP_OK) && (size_extrafield_local > 0)) {
if (ZWRITE64(zi->z_filefunc, zi->filestream, extrafield_local, size_extrafield_local) != size_extrafield_local)
err = ZIP_ERRNO;
}
/* Write the Zip64 extended info */
if ((err == ZIP_OK) && (zi->ci.zip64)) {
short headerid = 1;
short datasize = 16;
ZPOS64_T compressed_size = 0;
ZPOS64_T uncompressed_size = 0;
/* Remember position of Zip64 extended info for the local file header.
(needed when we update size after done with file) */
zi->ci.pos_zip64extrainfo = ZTELL64(zi->z_filefunc, zi->filestream);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (short)headerid, 2);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (short)datasize, 2);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (ZPOS64_T)uncompressed_size, 8);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (ZPOS64_T)compressed_size, 8);
}
#ifdef HAVE_AES
/* Write the AES extended info */
if ((err == ZIP_OK) && (zi->ci.method == AES_METHOD)) {
int headerid = 0x9901;
short datasize = 7;
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, headerid, 2);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, datasize, 2);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, AES_VERSION, 2);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, 'A', 1);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, 'E', 1);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, AES_ENCRYPTIONMODE, 1);
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, zi->ci.compression_method, 2);
}
#endif
#ifdef HAVE_BZIP2
zi->ci.bstream.avail_in = (uInt)0;
zi->ci.bstream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.bstream.next_out = (char *)zi->ci.buffered_data;
zi->ci.bstream.total_in_hi32 = 0;
zi->ci.bstream.total_in_lo32 = 0;
zi->ci.bstream.total_out_hi32 = 0;
zi->ci.bstream.total_out_lo32 = 0;
#endif
zi->ci.stream.avail_in = (uInt)0;
zi->ci.stream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.stream.next_out = zi->ci.buffered_data;
zi->ci.stream.total_in = 0;
zi->ci.stream.total_out = 0;
zi->ci.stream.data_type = Z_BINARY;
if ((err == ZIP_OK) && (!zi->ci.raw)) {
if (method == Z_DEFLATED) {
zi->ci.stream.zalloc = (alloc_func)0;
zi->ci.stream.zfree = (free_func)0;
zi->ci.stream.opaque = (voidpf)zi;
if (windowBits > 0)
windowBits = -windowBits;
err = deflateInit2(&zi->ci.stream, level, Z_DEFLATED, windowBits, memLevel, strategy);
if (err == Z_OK)
zi->ci.stream_initialised = Z_DEFLATED;
} else if (method == Z_BZIP2ED) {
#ifdef HAVE_BZIP2
zi->ci.bstream.bzalloc = 0;
zi->ci.bstream.bzfree = 0;
zi->ci.bstream.opaque = (voidpf)0;
err = BZ2_bzCompressInit(&zi->ci.bstream, level, 0, 35);
if (err == BZ_OK)
zi->ci.stream_initialised = Z_BZIP2ED;
#endif
}
}
#ifndef NOCRYPT
zi->ci.crypt_header_size = 0;
if ((err == Z_OK) && ((zi->ci.flag & 1) != 0)) {
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD) {
unsigned char passverify[AES_PWVERIFYSIZE];
unsigned char saltvalue[AES_MAXSALTLENGTH];
uInt saltlength;
if ((AES_ENCRYPTIONMODE < 1) || (AES_ENCRYPTIONMODE > 3))
return Z_ERRNO;
saltlength = SALT_LENGTH(AES_ENCRYPTIONMODE);
prng_init(entropy_fun, zi->ci.aes_rng);
prng_rand(saltvalue, saltlength, zi->ci.aes_rng);
prng_end(zi->ci.aes_rng);
fcrypt_init(AES_ENCRYPTIONMODE, (unsigned char *)password, (unsigned int)strlen(password), saltvalue, passverify, &zi->ci.aes_ctx);
if (ZWRITE64(zi->z_filefunc, zi->filestream, saltvalue, saltlength) != saltlength)
err = ZIP_ERRNO;
if (ZWRITE64(zi->z_filefunc, zi->filestream, passverify, AES_PWVERIFYSIZE) != AES_PWVERIFYSIZE)
err = ZIP_ERRNO;
zi->ci.crypt_header_size = saltlength + AES_PWVERIFYSIZE + AES_AUTHCODESIZE;
} else
#endif
{
unsigned char bufHead[RAND_HEAD_LEN];
unsigned int sizeHead;
zi->ci.pcrc_32_tab = (const unsigned long *)get_crc_table();
/*init_keys(password, zi->ci.keys, zi->ci.pcrc_32_tab);*/
sizeHead = crypthead(password, bufHead, RAND_HEAD_LEN, zi->ci.keys, zi->ci.pcrc_32_tab, crcForCrypting);
zi->ci.crypt_header_size = sizeHead;
if (ZWRITE64(zi->z_filefunc, zi->filestream, bufHead, sizeHead) != sizeHead)
err = ZIP_ERRNO;
}
}
#endif
if (err == Z_OK)
zi->in_opened_file_inzip = 1;
return err;
}
extern int ZEXPORT zipOpenNewFileInZip4(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw, int windowBits,
int memLevel, int strategy, const char *password, uLong crcForCrypting, uLong versionMadeBy, uLong flagBase)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, raw, windowBits, memLevel,
strategy, password, crcForCrypting, versionMadeBy, flagBase, 0);
}
extern int ZEXPORT zipOpenNewFileInZip3(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw, int windowBits,
int memLevel, int strategy, const char *password, uLong crcForCrypting)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, raw, windowBits, memLevel,
strategy, password, crcForCrypting, VERSIONMADEBY, 0, 0);
}
extern int ZEXPORT zipOpenNewFileInZip3_64(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw, int windowBits,
int memLevel, int strategy, const char *password, uLong crcForCrypting, int zip64)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, raw, windowBits, memLevel, strategy,
password, crcForCrypting, VERSIONMADEBY, 0, zip64);
}
extern int ZEXPORT zipOpenNewFileInZip2(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, raw, -MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, NULL, 0, VERSIONMADEBY, 0, 0);
}
extern int ZEXPORT zipOpenNewFileInZip2_64(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int raw, int zip64)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, raw, -MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, NULL, 0, VERSIONMADEBY, 0, zip64);
}
extern int ZEXPORT zipOpenNewFileInZip64(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level, int zip64)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, 0, -MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, NULL, 0, VERSIONMADEBY, 0, zip64);
}
extern int ZEXPORT zipOpenNewFileInZip(zipFile file, const char *filename, const zip_fileinfo *zipfi,
const void *extrafield_local, uInt size_extrafield_local, const void *extrafield_global,
uInt size_extrafield_global, const char *comment, int method, int level)
{
return zipOpenNewFileInZip4_64(file, filename, zipfi, extrafield_local, size_extrafield_local,
extrafield_global, size_extrafield_global, comment, method, level, 0, -MAX_WBITS, DEF_MEM_LEVEL,
Z_DEFAULT_STRATEGY, NULL, 0, VERSIONMADEBY, 0, 0);
}
/* Flushes the write buffer to disk */
local int zip64FlushWriteBuffer OF((zip64_internal * zi));
local int zip64FlushWriteBuffer(zip64_internal *zi)
{
int err = ZIP_OK;
uInt written = 0;
uInt total_written = 0;
uInt write = 0;
uInt max_write = 0;
ZPOS64_T size_available = 0;
if ((zi->ci.flag & 1) != 0) {
#ifndef NOCRYPT
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD) {
fcrypt_encrypt(zi->ci.buffered_data, zi->ci.pos_in_buffered_data, &zi->ci.aes_ctx);
} else
#endif
{
uInt i;
int t;
for (i = 0; i < zi->ci.pos_in_buffered_data; i++)
zi->ci.buffered_data[i] = zencode(zi->ci.keys, zi->ci.pcrc_32_tab, zi->ci.buffered_data[i], t);
}
#endif
}
write = zi->ci.pos_in_buffered_data;
do {
max_write = write;
if (zi->disk_size > 0) {
err = zipGetDiskSizeAvailable((zipFile)zi, &size_available);
if (err != ZIP_OK)
return err;
if (size_available == 0) {
err = zipGoToNextDisk((zipFile)zi);
if (err != ZIP_OK)
return err;
}
if (size_available < (ZPOS64_T)max_write)
max_write = (uInt)size_available;
}
written = (unsigned int)ZWRITE64(zi->z_filefunc, zi->filestream, zi->ci.buffered_data + total_written, max_write);
if (ZERROR64(zi->z_filefunc, zi->filestream)) {
err = ZIP_ERRNO;
break;
}
total_written += written;
write -= written;
} while (write > 0);
zi->ci.total_compressed += zi->ci.pos_in_buffered_data;
#ifdef HAVE_BZIP2
if (zi->ci.compression_method == Z_BZIP2ED) {
zi->ci.total_uncompressed += zi->ci.bstream.total_in_lo32;
zi->ci.bstream.total_in_lo32 = 0;
zi->ci.bstream.total_in_hi32 = 0;
} else
#endif
{
zi->ci.total_uncompressed += zi->ci.stream.total_in;
zi->ci.stream.total_in = 0;
}
zi->ci.pos_in_buffered_data = 0;
return err;
}
extern int ZEXPORT zipWriteInFileInZip(zipFile file, const void *buf, unsigned int len)
{
zip64_internal *zi;
int err = ZIP_OK;
if (file == NULL)
return ZIP_PARAMERROR;
zi = (zip64_internal *)file;
if (zi->in_opened_file_inzip == 0)
return ZIP_PARAMERROR;
zi->ci.crc32 = crc32(zi->ci.crc32, buf, (uInt)len);
#ifdef HAVE_BZIP2
if ((zi->ci.compression_method == Z_BZIP2ED) && (!zi->ci.raw)) {
zi->ci.bstream.next_in = (void *)buf;
zi->ci.bstream.avail_in = len;
err = BZ_RUN_OK;
while ((err == BZ_RUN_OK) && (zi->ci.bstream.avail_in > 0)) {
if (zi->ci.bstream.avail_out == 0) {
if (zip64FlushWriteBuffer(zi) == ZIP_ERRNO)
err = ZIP_ERRNO;
zi->ci.bstream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.bstream.next_out = (char *)zi->ci.buffered_data;
} else {
uLong uTotalOutBefore_lo = zi->ci.bstream.total_out_lo32;
uLong uTotalOutBefore_hi = zi->ci.bstream.total_out_hi32;
err = BZ2_bzCompress(&zi->ci.bstream, BZ_RUN);
zi->ci.pos_in_buffered_data += (uInt)(zi->ci.bstream.total_out_lo32 - uTotalOutBefore_lo);
}
}
if (err == BZ_RUN_OK)
err = ZIP_OK;
} else
#endif
{
zi->ci.stream.next_in = (Bytef *)buf;
zi->ci.stream.avail_in = len;
while ((err == ZIP_OK) && (zi->ci.stream.avail_in > 0)) {
if (zi->ci.stream.avail_out == 0) {
if (zip64FlushWriteBuffer(zi) == ZIP_ERRNO)
err = ZIP_ERRNO;
zi->ci.stream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.stream.next_out = zi->ci.buffered_data;
}
if (err != ZIP_OK)
break;
if ((zi->ci.compression_method == Z_DEFLATED) && (!zi->ci.raw)) {
uLong total_out_before = zi->ci.stream.total_out;
err = deflate(&zi->ci.stream, Z_NO_FLUSH);
zi->ci.pos_in_buffered_data += (uInt)(zi->ci.stream.total_out - total_out_before);
} else {
uInt copy_this, i;
if (zi->ci.stream.avail_in < zi->ci.stream.avail_out)
copy_this = zi->ci.stream.avail_in;
else
copy_this = zi->ci.stream.avail_out;
for (i = 0; i < copy_this; i++)
*(((char *)zi->ci.stream.next_out) + i) =
*(((const char *)zi->ci.stream.next_in) + i);
zi->ci.stream.avail_in -= copy_this;
zi->ci.stream.avail_out -= copy_this;
zi->ci.stream.next_in += copy_this;
zi->ci.stream.next_out += copy_this;
zi->ci.stream.total_in += copy_this;
zi->ci.stream.total_out += copy_this;
zi->ci.pos_in_buffered_data += copy_this;
}
}
}
return err;
}
extern int ZEXPORT zipCloseFileInZipRaw(zipFile file, uLong uncompressed_size, uLong crc32)
{
return zipCloseFileInZipRaw64(file, uncompressed_size, crc32);
}
extern int ZEXPORT zipCloseFileInZipRaw64(zipFile file, ZPOS64_T uncompressed_size, uLong crc32)
{
zip64_internal *zi;
ZPOS64_T compressed_size;
uLong invalidValue = 0xffffffff;
uLong i = 0;
short datasize = 0;
int err = ZIP_OK;
if (file == NULL)
return ZIP_PARAMERROR;
zi = (zip64_internal *)file;
if (zi->in_opened_file_inzip == 0)
return ZIP_PARAMERROR;
zi->ci.stream.avail_in = 0;
if (!zi->ci.raw) {
if (zi->ci.compression_method == Z_DEFLATED) {
while (err == ZIP_OK) {
uLong total_out_before;
if (zi->ci.stream.avail_out == 0) {
if (zip64FlushWriteBuffer(zi) == ZIP_ERRNO)
err = ZIP_ERRNO;
zi->ci.stream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.stream.next_out = zi->ci.buffered_data;
}
total_out_before = zi->ci.stream.total_out;
err = deflate(&zi->ci.stream, Z_FINISH);
zi->ci.pos_in_buffered_data += (uInt)(zi->ci.stream.total_out - total_out_before);
}
} else if (zi->ci.compression_method == Z_BZIP2ED) {
#ifdef HAVE_BZIP2
err = BZ_FINISH_OK;
while (err == BZ_FINISH_OK) {
uLong total_out_before;
if (zi->ci.bstream.avail_out == 0) {
if (zip64FlushWriteBuffer(zi) == ZIP_ERRNO)
err = ZIP_ERRNO;
zi->ci.bstream.avail_out = (uInt)Z_BUFSIZE;
zi->ci.bstream.next_out = (char *)zi->ci.buffered_data;
}
total_out_before = zi->ci.bstream.total_out_lo32;
err = BZ2_bzCompress(&zi->ci.bstream, BZ_FINISH);
if (err == BZ_STREAM_END)
err = Z_STREAM_END;
zi->ci.pos_in_buffered_data += (uInt)(zi->ci.bstream.total_out_lo32 - total_out_before);
}
if (err == BZ_FINISH_OK)
err = ZIP_OK;
#endif
}
}
if (err == Z_STREAM_END)
err = ZIP_OK; /* this is normal */
if ((zi->ci.pos_in_buffered_data > 0) && (err == ZIP_OK)) {
if (zip64FlushWriteBuffer(zi) == ZIP_ERRNO)
err = ZIP_ERRNO;
}
#ifdef HAVE_AES
if (zi->ci.method == AES_METHOD) {
unsigned char authcode[AES_AUTHCODESIZE];
fcrypt_end(authcode, &zi->ci.aes_ctx);
if (ZWRITE64(zi->z_filefunc, zi->filestream, authcode, AES_AUTHCODESIZE) != AES_AUTHCODESIZE)
err = ZIP_ERRNO;
}
#endif
if (!zi->ci.raw) {
if (zi->ci.compression_method == Z_DEFLATED) {
int tmp_err = deflateEnd(&zi->ci.stream);
if (err == ZIP_OK)
err = tmp_err;
zi->ci.stream_initialised = 0;
}
#ifdef HAVE_BZIP2
else if (zi->ci.compression_method == Z_BZIP2ED) {
int tmperr = BZ2_bzCompressEnd(&zi->ci.bstream);
if (err == ZIP_OK)
err = tmperr;
zi->ci.stream_initialised = 0;
}
#endif
crc32 = (uLong)zi->ci.crc32;
uncompressed_size = zi->ci.total_uncompressed;
}
compressed_size = zi->ci.total_compressed;
#ifndef NOCRYPT
compressed_size += zi->ci.crypt_header_size;
#endif
/* Update current item crc and sizes */
if (compressed_size >= 0xffffffff || uncompressed_size >= 0xffffffff || zi->ci.pos_local_header >= 0xffffffff) {
zip64local_putValue_inmemory(zi->ci.central_header + 4, (uLong)45, 2); /* version made by */
zip64local_putValue_inmemory(zi->ci.central_header + 6, (uLong)45, 2); /* version needed */
}
zip64local_putValue_inmemory(zi->ci.central_header + 16, crc32, 4); /* crc */
if (compressed_size >= 0xffffffff)
zip64local_putValue_inmemory(zi->ci.central_header + 20, invalidValue, 4); /* compr size */
else
zip64local_putValue_inmemory(zi->ci.central_header + 20, compressed_size, 4); /* compr size */
if (zi->ci.stream.data_type == Z_ASCII)
zip64local_putValue_inmemory(zi->ci.central_header + 36, (uLong)Z_ASCII, 2); /* internal file attrib */
if (uncompressed_size >= 0xffffffff)
zip64local_putValue_inmemory(zi->ci.central_header + 24, invalidValue, 4); /* uncompr size */
else
zip64local_putValue_inmemory(zi->ci.central_header + 24, uncompressed_size, 4); /* uncompr size */
/* Add ZIP64 extra info field for uncompressed size */
if (uncompressed_size >= 0xffffffff)
datasize += 8;
/* Add ZIP64 extra info field for compressed size */
if (compressed_size >= 0xffffffff)
datasize += 8;
/* Add ZIP64 extra info field for relative offset to local file header of current file */
if (zi->ci.pos_local_header >= 0xffffffff)
datasize += 8;
/* Add Extra Information Header for 'ZIP64 information' */
if (datasize > 0) {
char *p = zi->ci.central_header + zi->ci.size_centralheader;
if ((uLong)(datasize + 4) > zi->ci.size_centralextrafree)
return ZIP_BADZIPFILE;
zip64local_putValue_inmemory(p, 0x0001, 2);
p += 2;
zip64local_putValue_inmemory(p, datasize, 2);
p += 2;
if (uncompressed_size >= 0xffffffff) {
zip64local_putValue_inmemory(p, uncompressed_size, 8);
p += 8;
}
if (compressed_size >= 0xffffffff) {
zip64local_putValue_inmemory(p, compressed_size, 8);
p += 8;
}
if (zi->ci.pos_local_header >= 0xffffffff) {
zip64local_putValue_inmemory(p, zi->ci.pos_local_header, 8);
p += 8;
}
zi->ci.size_centralextrafree -= datasize + 4;
zi->ci.size_centralheader += datasize + 4;
zi->ci.size_centralextra += datasize + 4;
zip64local_putValue_inmemory(zi->ci.central_header + 30, (uLong)zi->ci.size_centralextra, 2);
}
#ifdef HAVE_AES
/* Write the AES extended info */
if (zi->ci.method == AES_METHOD) {
char *p = zi->ci.central_header + zi->ci.size_centralheader;
datasize = 7;
if ((uLong)(datasize + 4) > zi->ci.size_centralextrafree)
return ZIP_BADZIPFILE;
zip64local_putValue_inmemory(p, 0x9901, 2);
p += 2;
zip64local_putValue_inmemory(p, datasize, 2);
p += 2;
zip64local_putValue_inmemory(p, AES_VERSION, 2);
p += 2;
zip64local_putValue_inmemory(p, 'A', 1);
p += 1;
zip64local_putValue_inmemory(p, 'E', 1);
p += 1;
zip64local_putValue_inmemory(p, AES_ENCRYPTIONMODE, 1);
p += 1;
zip64local_putValue_inmemory(p, zi->ci.compression_method, 2);
p += 2;
zi->ci.size_centralextrafree -= datasize + 4;
zi->ci.size_centralheader += datasize + 4;
zi->ci.size_centralextra += datasize + 4;
zip64local_putValue_inmemory(zi->ci.central_header + 30, (uLong)zi->ci.size_centralextra, 2);
}
#endif
/* Restore comment to correct position */
for (i = 0; i < zi->ci.size_comment; i++)
zi->ci.central_header[zi->ci.size_centralheader + i] =
zi->ci.central_header[zi->ci.size_centralheader + zi->ci.size_centralextrafree + i];
zi->ci.size_centralheader += zi->ci.size_comment;
if (err == ZIP_OK)
err = add_data_in_datablock(&zi->central_dir, zi->ci.central_header, (uLong)zi->ci.size_centralheader);
free(zi->ci.central_header);
if (err == ZIP_OK) {
/* Update the LocalFileHeader with the new values. */
ZPOS64_T cur_pos_inzip = ZTELL64(zi->z_filefunc, zi->filestream);
uLong cur_number_disk = zi->number_disk;
/* Local file header is stored on previous disk, switch to make edits */
if (zi->ci.number_disk != cur_number_disk)
err = zipGoToSpecificDisk(file, (int)zi->ci.number_disk, 1);
if (ZSEEK64(zi->z_filefunc, zi->filestream, zi->ci.pos_local_header + 14, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, crc32, 4); /* crc 32, unknown */
if (uncompressed_size >= 0xffffffff || compressed_size >= 0xffffffff) {
if (zi->ci.pos_zip64extrainfo > 0) {
/* Update the size in the ZIP64 extended field. */
if (ZSEEK64(zi->z_filefunc, zi->filestream, zi->ci.pos_zip64extrainfo + 4, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
if (err == ZIP_OK) /* compressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, uncompressed_size, 8);
if (err == ZIP_OK) /* uncompressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, compressed_size, 8);
} else
err = ZIP_BADZIPFILE; /* Caller passed zip64 = 0, so no room for zip64 info -> fatal */
} else {
if (err == ZIP_OK) /* compressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, compressed_size, 4);
if (err == ZIP_OK) /* uncompressed size, unknown */
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, uncompressed_size, 4);
}
/* Now switch back again to the disk we were on before */
if (zi->ci.number_disk != cur_number_disk)
err = zipGoToSpecificDisk(file, (int)cur_number_disk, 1);
if (ZSEEK64(zi->z_filefunc, zi->filestream, cur_pos_inzip, ZLIB_FILEFUNC_SEEK_SET) != 0)
err = ZIP_ERRNO;
}
zi->number_entry++;
zi->in_opened_file_inzip = 0;
return err;
}
extern int ZEXPORT zipCloseFileInZip(zipFile file)
{
return zipCloseFileInZipRaw(file, 0, 0);
}
extern int ZEXPORT zipClose(zipFile file, const char *global_comment)
{
zip64_internal *zi;
int err = 0;
uLong size_centraldir = 0;
uInt size_global_comment = 0;
ZPOS64_T centraldir_pos_inzip;
ZPOS64_T pos = 0;
uLong write = 0;
if (file == NULL)
return ZIP_PARAMERROR;
zi = (zip64_internal *)file;
if (zi->in_opened_file_inzip == 1)
err = zipCloseFileInZip(file);
#ifndef NO_ADDFILEINEXISTINGZIP
if (global_comment == NULL)
global_comment = zi->globalcomment;
#endif
if (zi->filestream != zi->filestream_with_CD) {
if (ZCLOSE64(zi->z_filefunc, zi->filestream) != 0)
if (err == ZIP_OK)
err = ZIP_ERRNO;
if (zi->disk_size > 0)
zi->number_disk_with_CD = zi->number_disk + 1;
zi->filestream = zi->filestream_with_CD;
}
centraldir_pos_inzip = ZTELL64(zi->z_filefunc, zi->filestream);
if (err == ZIP_OK) {
linkedlist_datablock_internal *ldi = zi->central_dir.first_block;
while (ldi != NULL) {
if ((err == ZIP_OK) && (ldi->filled_in_this_block > 0)) {
write = ZWRITE64(zi->z_filefunc, zi->filestream, ldi->data, ldi->filled_in_this_block);
if (write != ldi->filled_in_this_block)
err = ZIP_ERRNO;
}
size_centraldir += ldi->filled_in_this_block;
ldi = ldi->next_datablock;
}
}
free_linkedlist(&(zi->central_dir));
pos = centraldir_pos_inzip - zi->add_position_when_writting_offset;
/* Write the ZIP64 central directory header */
if (pos >= 0xffffffff || zi->number_entry > 0xffff) {
ZPOS64_T zip64eocd_pos_inzip = ZTELL64(zi->z_filefunc, zi->filestream);
uLong zip64datasize = 44;
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)ZIP64ENDHEADERMAGIC, 4);
/* size of this 'zip64 end of central directory' */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (ZPOS64_T)zip64datasize, 8);
/* version made by */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)45, 2);
/* version needed */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)45, 2);
/* number of this disk */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD, 4);
/* number of the disk with the start of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD, 4);
/* total number of entries in the central dir on this disk */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, zi->number_entry, 8);
/* total number of entries in the central dir */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, zi->number_entry, 8);
/* size of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (ZPOS64_T)size_centraldir, 8);
if (err == ZIP_OK) {
/* offset of start of central directory with respect to the starting disk number */
ZPOS64_T pos = centraldir_pos_inzip - zi->add_position_when_writting_offset;
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (ZPOS64_T)pos, 8);
}
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)ZIP64ENDLOCHEADERMAGIC, 4);
/* number of the disk with the start of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD, 4);
/*relative offset to the Zip64EndOfCentralDirectory */
if (err == ZIP_OK) {
ZPOS64_T pos = zip64eocd_pos_inzip - zi->add_position_when_writting_offset;
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, pos, 8);
}
/* number of the disk with the start of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD + 1, 4);
}
/* Write the central directory header */
/* signature */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)ENDHEADERMAGIC, 4);
/* number of this disk */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD, 2);
/* number of the disk with the start of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_disk_with_CD, 2);
/* total number of entries in the central dir on this disk */
if (err == ZIP_OK) {
if (zi->number_entry >= 0xffff)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0xffff, 2); /* use value in ZIP64 record */
else
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_entry, 2);
}
/* total number of entries in the central dir */
if (err == ZIP_OK) {
if (zi->number_entry >= 0xffff)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0xffff, 2); /* use value in ZIP64 record */
else
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)zi->number_entry, 2);
}
/* size of the central directory */
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)size_centraldir, 4);
/* offset of start of central directory with respect to the starting disk number */
if (err == ZIP_OK) {
ZPOS64_T pos = centraldir_pos_inzip - zi->add_position_when_writting_offset;
if (pos >= 0xffffffff)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)0xffffffff, 4);
else
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)pos, 4);
}
/* Write global comment */
if (global_comment != NULL)
size_global_comment = (uInt)strlen(global_comment);
if (err == ZIP_OK)
err = zip64local_putValue(&zi->z_filefunc, zi->filestream, (uLong)size_global_comment, 2);
if (err == ZIP_OK && size_global_comment > 0) {
if (ZWRITE64(zi->z_filefunc, zi->filestream, global_comment, size_global_comment) != size_global_comment)
err = ZIP_ERRNO;
}
if ((ZCLOSE64(zi->z_filefunc, zi->filestream) != 0) && (err == ZIP_OK))
err = ZIP_ERRNO;
#ifndef NO_ADDFILEINEXISTINGZIP
TRYFREE(zi->globalcomment);
#endif
TRYFREE(zi);
return err;
}
/* zip.h -- IO on .zip files using zlib
Version 1.1, February 14h, 2010
part of the MiniZip project
Copyright (C) 1998-2010 Gilles Vollant
http://www.winimage.com/zLibDll/minizip.html
Modifications for Zip64 support
Copyright (C) 2009-2010 Mathias Svensson
http://result42.com
This program is distributed under the terms of the same license as zlib.
See the accompanying LICENSE file for the full text of the license.
*/
#ifndef _ZIP_H
#define _ZIP_H
#define HAVE_AES
#ifdef __cplusplus
extern "C" {
#endif
#ifndef _ZLIB_H
# include "zlib.h"
#endif
#ifndef _ZLIBIOAPI_H
# include "ioapi.h"
#endif
#ifdef HAVE_BZIP2
# include "bzlib.h"
#endif
#define Z_BZIP2ED 12
#if defined(STRICTZIP) || defined(STRICTZIPUNZIP)
/* like the STRICT of WIN32, we define a pointer that cannot be converted
from (void*) without cast */
typedef struct TagzipFile__ { int unused; } zipFile__;
typedef zipFile__ *zipFile;
#else
typedef voidp zipFile;
#endif
#define ZIP_OK (0)
#define ZIP_EOF (0)
#define ZIP_ERRNO (Z_ERRNO)
#define ZIP_PARAMERROR (-102)
#define ZIP_BADZIPFILE (-103)
#define ZIP_INTERNALERROR (-104)
#ifndef DEF_MEM_LEVEL
# if MAX_MEM_LEVEL >= 8
# define DEF_MEM_LEVEL 8
# else
# define DEF_MEM_LEVEL MAX_MEM_LEVEL
# endif
#endif
/* default memLevel */
/* tm_zip contain date/time info */
typedef struct tm_zip_s
{
uInt tm_sec; /* seconds after the minute - [0,59] */
uInt tm_min; /* minutes after the hour - [0,59] */
uInt tm_hour; /* hours since midnight - [0,23] */
uInt tm_mday; /* day of the month - [1,31] */
uInt tm_mon; /* months since January - [0,11] */
uInt tm_year; /* years - [1980..2044] */
} tm_zip;
typedef struct
{
tm_zip tmz_date; /* date in understandable format */
uLong dosDate; /* if dos_date == 0, tmu_date is used */
uLong internal_fa; /* internal file attributes 2 bytes */
uLong external_fa; /* external file attributes 4 bytes */
} zip_fileinfo;
typedef const char* zipcharpc;
#define APPEND_STATUS_CREATE (0)
#define APPEND_STATUS_CREATEAFTER (1)
#define APPEND_STATUS_ADDINZIP (2)
/***************************************************************************/
/* Writing a zip file */
extern zipFile ZEXPORT zipOpen OF((const char *pathname, int append));
extern zipFile ZEXPORT zipOpen64 OF((const void *pathname, int append));
/* Create a zipfile.
pathname should contain the full pathname (by example, on a Windows XP computer
"c:\\zlib\\zlib113.zip" or on an Unix computer "zlib/zlib113.zip".
return NULL if zipfile cannot be opened
return zipFile handle if no error
If the file pathname exist and append == APPEND_STATUS_CREATEAFTER, the zip
will be created at the end of the file. (useful if the file contain a self extractor code)
If the file pathname exist and append == APPEND_STATUS_ADDINZIP, we will add files in existing
zip (be sure you don't add file that doesn't exist)
NOTE: There is no delete function into a zipfile. If you want delete file into a zipfile,
you must open a zipfile, and create another. Of course, you can use RAW reading and writing to copy
the file you did not want delete. */
extern zipFile ZEXPORT zipOpen2 OF((const char *pathname, int append, zipcharpc* globalcomment,
zlib_filefunc_def* pzlib_filefunc_def));
extern zipFile ZEXPORT zipOpen2_64 OF((const void *pathname, int append, zipcharpc* globalcomment,
zlib_filefunc64_def* pzlib_filefunc_def));
extern zipFile ZEXPORT zipOpen3 OF((const char *pathname, int append, ZPOS64_T disk_size,
zipcharpc* globalcomment, zlib_filefunc_def* pzlib_filefunc_def));
/* Same as zipOpen2 but allows specification of spanned zip size */
extern zipFile ZEXPORT zipOpen3_64 OF((const void *pathname, int append, ZPOS64_T disk_size,
zipcharpc* globalcomment, zlib_filefunc64_def* pzlib_filefunc_def));
extern int ZEXPORT zipOpenNewFileInZip OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level));
/* Open a file in the ZIP for writing.
filename : the filename in zip (if NULL, '-' without quote will be used
*zipfi contain supplemental information
extrafield_local buffer to store the local header extra field data, can be NULL
size_extrafield_local size of extrafield_local buffer
extrafield_global buffer to store the global header extra field data, can be NULL
size_extrafield_global size of extrafield_local buffer
comment buffer for comment string
method contain the compression method (0 for store, Z_DEFLATED for deflate)
level contain the level of compression (can be Z_DEFAULT_COMPRESSION)
zip64 is set to 1 if a zip64 extended information block should be added to the local file header.
this MUST be '1' if the uncompressed size is >= 0xffffffff. */
extern int ZEXPORT zipOpenNewFileInZip64 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int zip64));
/* Same as zipOpenNewFileInZip with zip64 support */
extern int ZEXPORT zipOpenNewFileInZip2 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw));
/* Same as zipOpenNewFileInZip, except if raw=1, we write raw file */
extern int ZEXPORT zipOpenNewFileInZip2_64 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw, int zip64));
/* Same as zipOpenNewFileInZip3 with zip64 support */
extern int ZEXPORT zipOpenNewFileInZip3 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw, int windowBits, int memLevel,
int strategy, const char* password, uLong crcForCrypting));
/* Same as zipOpenNewFileInZip2, except
windowBits, memLevel, strategy : see parameter strategy in deflateInit2
password : crypting password (NULL for no crypting)
crcForCrypting : crc of file to compress (needed for crypting) */
extern int ZEXPORT zipOpenNewFileInZip3_64 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw, int windowBits, int memLevel,
int strategy, const char* password, uLong crcForCrypting, int zip64));
/* Same as zipOpenNewFileInZip3 with zip64 support */
extern int ZEXPORT zipOpenNewFileInZip4 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw, int windowBits, int memLevel,
int strategy, const char* password, uLong crcForCrypting, uLong versionMadeBy, uLong flagBase));
/* Same as zipOpenNewFileInZip3 except versionMadeBy & flag fields */
extern int ZEXPORT zipOpenNewFileInZip4_64 OF((zipFile file, const char* filename, const zip_fileinfo* zipfi,
const void* extrafield_local, uInt size_extrafield_local, const void* extrafield_global,
uInt size_extrafield_global, const char* comment, int method, int level, int raw, int windowBits, int memLevel,
int strategy, const char* password, uLong crcForCrypting, uLong versionMadeBy, uLong flagBase, int zip64));
/* Same as zipOpenNewFileInZip4 with zip64 support */
extern int ZEXPORT zipWriteInFileInZip OF((zipFile file, const void* buf, unsigned len));
/* Write data in the zipfile */
extern int ZEXPORT zipCloseFileInZip OF((zipFile file));
/* Close the current file in the zipfile */
extern int ZEXPORT zipCloseFileInZipRaw OF((zipFile file, uLong uncompressed_size, uLong crc32));
extern int ZEXPORT zipCloseFileInZipRaw64 OF((zipFile file, ZPOS64_T uncompressed_size, uLong crc32));
/* Close the current file in the zipfile, for file opened with parameter raw=1 in zipOpenNewFileInZip2
uncompressed_size and crc32 are value for the uncompressed size */
extern int ZEXPORT zipClose OF((zipFile file, const char* global_comment));
/* Close the zipfile */
/***************************************************************************/
#ifdef __cplusplus
}
#endif
#endif /* _ZIP_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment